Categories
_NOTES_ General Relativity Gravitational Waves

A Quick Look at GWs

Lecture notes 14.11.20

This is my draft for a 20min introduction to gravitational wave for sophomore students, presented on Prof.Fan’s Theoretical Mechanics course. A rearranged LaTeX version may be uploaded later.
Categories
_NOTES_ General Relativity

MTW chapter1: Geometry in Brief

Categories
_NOTES_ Christoffel symbols General Relativity Mathematica codes

Compute Christoffel Symbol and Its Contraction with Given Metric via Mathematica

This article using Schwarzschild metric as an example to demonstrate the calculation of Christoffel symbols and their contraction with given metric

Codes used in this post has been published on Wolfram cloud and is completely open source.. Loading online notebook may take a while, take a break for ur health 🙂

Categories
_NOTES_ 1.2 Photon chapter1. historical introduction exercise General Relativity

1.2 Photon and Compton Scattering

1.2 Photon

solution of Compton scattering may also serve as an exercise of relativity
Categories
_NOTES_ General Relativity tensor

Newtonian Tidal Effect

This note can be use as an example of tensor analysis

This article shows the derivation of Newtonian tidal effect from Newton’s equation of motion and gravity, with the notation of tensor analysis and Einstein summation convention. This may serve as an example for beginners in tensor analysis to check their comprehension, meanwhile as a baby version or lead-in to geodesic deviation of general relativity.


Newton’s second law (componentwise)

$$
\frac{d^{2} x^{i}}{d t^{2}} \equiv a^{i} \equiv \frac{F^{i}}{m}
$$

Newtonian equation of gravitation

$$
\frac{F^{i}}{m}=-\eta^{i j} \partial_{j} \phi
$$

combine two equations give:

$$
\frac{d^{2} x^{i}}{d t^{2}}=-\eta i j\left[\partial_{j} \phi\right]_{\vec{x}}
$$

where the subscription $\vec{x}$ denotes the derivative is operated at position $\vec{x}$ similarly we have at $\vec{x}+\vec{n}$ :

$$
\frac{d^{2}\left(x^{i}+n^{i}\right)}{d t^{2}}=-\eta^{i j}\left[\partial_{j} \phi\right]_{\vec{x}+\vec{n}}
$$

make subtraction give:

$$
\frac{d^{2} n^{i}}{d t^{2}}=-\eta^{i j}\left(\left[\partial_{j} \phi\right]{\vec{x}+\vec{n}}-\left[\partial{j} \phi\right]_{\vec{x}}\right)
$$

given $\vec{n}$ is infinitesimal, we have RHS:

$$
\text { RHS }=-\eta^{i j} n^{k}\left[\partial_{k}\left(\partial_{j} \phi\right)\right]_{\vec{x}}
$$

set Cartesian coordinates originated from centre of earth orient the $z$-axis so that is consists with $\vec{x}$ (position vector) then $\vec{X}=\left(X^{1}, X^{2}, X^{3}\right)=(0,0, z)$.

gravitational potential is given by:

$$
\phi=-\frac{G M}{r}=-\frac{G M}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}
$$

and thus

$$
\begin{aligned}
\partial_{j} \phi & =\frac{\partial \phi}{\partial x^{j}} \\
& =-\frac{d \phi}{d r} \frac{\partial r}{\partial x^{j}} \\
& =\frac{G M}{r^{3}} x^{j}
\end{aligned}
$$

and

$$
\begin{aligned}
\partial_{k} \partial_{j} \phi & =\frac{\partial}{\partial x^{k}}\left(\frac{G M}{r^{3}} x^{j}\right) \\
& =\frac{\partial}{\partial x^{k}}\left(\frac{G M}{r^{3}}\right) x^{j}+\delta_{k}^{j} \frac{G M}{r^{3}} \\
& =-\frac{3 G M}{r^{4}} x^{j}+\delta_{k}^{j} \frac{G M}{r^{3}}
\end{aligned}
$$

thus.
$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} n^{x}=-\frac{G M}{r^{3}} n^{x} \\
& \frac{d^{2}}{d t^{2}} n^{y}=-\frac{G M}{r^{3}} n^{y} \\
& \frac{d^{2}}{d t^{2}} n^{z}=\frac{2 G M}{r^{3}} n^{z}
\end{aligned}
$$