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Potential & Field Equation
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Electric Potential

In electrostatics,Coulomb'’s law tells us
1 qQ.

The electric field:
E =

Point charge — Continuous charge distribution
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Newtonian Potential & Multipole Expansions

7 = 1/ |1l.
B K LIRS SRR

4/ 46




Potential & Field Equation
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Electric Potential

Since V x E = O[Appendix I],we can express E as —690. Then we
take the divergence of the both sides of (3) [Appendix Il] and get
the Poisson's Equation:

¥ = -0 )

Equation (4) exactly describes the electrostatic field by introducing
an electric potential ¢(a scalar field).
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Potential & Field Equation
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Newtonian Gravitational Potential

Making some replacements:
1/4meg - -G, qg—m, Q— Mand ¢ — ¢
Equation (4) becomes:

V26 = 4nGp(t, F) (5)

Equation (5) exactly describes the Newtonian gravitational field by
introducing a gravitational potential ¢(a 3-dimensional scalar field).
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Multipole Expansions
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Point mass & Realistic body

Point mass M : p(t,7) = M§3(F)
[hint . V2 (1) = V- (r%) = 47r53(F)]

Realistic body :
- a first approximation :
spherically symmetry
deviations
multipole expansions
(powerful when applied to slight deviations)
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Spherical body

The Laplacian operator in spherical polar coordinates(r, 8, ¢):

~ 10 ,0 1 9 0 1 02
2 2
= 0— 4+ ———=— (7
v 2ar ar T 2sing 00 sin 00 + r2 sin? @ 02 ()
p and ¢ of a spherical body depend on t and r only, and in this
case Poisson’s equation reduces to

e (P5) = m6nten (8)

Integrating once (the constant of integration was chosen so that
the gravitational force at r = 0 vanishes)

% = rG2/0 p(t, ranrdr’ 9)

AT KXAFMERZEREARZER

Newtonian Potential & Multipole Expansions 9 / 46



Multipole Expansions
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Spherical body

Define ,
m(t,r):= / p(t, rdxr?dr’ (10)
0
and the body's total mass is
R
M:=m(t,r=R) = / p(t, ranr?dr’ (11)
0
- The potential inside the matter(r < R):
GM Rom(t,r")
¢(t, r) :—R—G/r rl2 dr/ (12)
- The potential outside the matter(r > R):
GM
o(t,r) = i (13)
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Non-spherical body

diagnose
small deviations <  multipole expansions
adopt
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Multipole Expansions
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Non-spherical body

We decompose the mass density p and Newtonian potential ¢ in
spherical harmonics[Appendix V]

(£, 7) = pem(t, 1) Yem(9, 0) (14)
tm
F) = em(t,r)Yem(6, ) (15)
¢m
We substitute (14) and (15) into (5) and obtain
Lim = 41Gr’ pym (16)
in which 9,0
L = P 5—€(€+1) (17)
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Non-spherical body

With the help of the Green's function method, we find

4w G < pem(t, r') 2 " NV,

bum(t, 1) = {rf/ Pt l) pager o L [ (e, )
m 2+ . e+l rtL fg m(t. 1)

(18)

Inserting this into (15), then

— 0
= _GZ2€+1 |:qu t I’) £+1 Yfm(a )"‘Pém(ta r)r Yém(9790):|

(19)
with ,
an(t.r) = [ P pum(e, )% (20)
0
R 1 )
p@m(t, r) :/ mpgm(t7 r/>rl dr/ (2].)
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Non-spherical body

Outside the matter distribution, where p;,, = 0, the term involving
Pem vanishes

47 Yim(0, )
¢6Xt(t7 r, 97 90) = _GZ 26 I 1q€m(t7 R)T (22)

m

We've successfully expanded the external potential ¢ex with
{Yem(0,9)} and {7}
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Non-spherical body

We can rewrite (22) in the following form:

¢ext = Z ¢€ (23)
l

with
Yﬁxg @)
_ 2 _EmA\Ty ¥/
o= =, 2z+1 < roun(tsr) dr> r
Z
47TG Yim(,
= / </ Y@m ,@l)p(t, r,e/’(p/)dQ/> err %
GMRZ
X —W
(24)
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0000000008000

Multipole moments

Multipole moments:

lem(t) : = qum(t, R)

R
l * N\ s 2
= r Yo (0, 0)p(t, 7 81n9d6’d4p> redr
[ ([ Yimeoote (25)
=/ 'Y (0, 9)p(t, P)dF (fx MRE)
v
o)

Yfm(97 90)
25 + 1 rétl

Gext(t,r,0,0) = —GZ (26)

An analogy of (26): '
V=Vv'¢g (27)
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Multipole Expansions
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Multipole moments

Monopole momnet:
log = Yood?% = —— 28
00 /P 00 Nz (28)

Dipole moments:

110 = “ 41 /pzd?’)_('
”3 (29)
hi1 = Fy/ & /p(x + iy)d®%

If we place the origin of the coordinate system at the body's
center-of-mass, so that fp>?d3>? =0= ho=hys =0.

(Q: Differences between the mass multipole moments introduced here
and the charge multipole moments defined in electromagnetism?)
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Multipole moments

Spherically symmetric — only lyg is non-zero

Axially symmetric about z axis — only /g is non-zero
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Multipole Expansions
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Axially symmetric body

It is conventional to express the moments in terms of dimensionless
quantities J; defined by

B 47 QO
2/ +1 MR!

Jp = (30)

The gravitational potential of an axially symmetric body can then
be written in the form

0 ¢
Pext (£, F) = —g [1 - ZJg <'Lr?> Py(cos 9)] (31)
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Extension: STF Decomposition
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STF vs {Yin}

Alternative decomposition: Using tensorial combinations of the
unit vector i := r/r (instead of spherical harmonics).

Each tensor that we shall construct from 7 will have the property
of being symmetric(S) under the exchange of any two of its
indices, and of being tracefree(TF) in any pair of indices; these
tensors are known as symmetric tracefree tensors, or STF tensors.
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Extension: STF Decomposition
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STF vs {Yin}

The decompositions in STF tensors and spherical harmonics both
involve building blocks that consist of irreducible representations of
the rotation group labelled by a multipole index £.

It is helpful to be conversant in both languages.

STF

o) 4 (0,0)
¢ = (x,y,2)
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Extension: STF Decomposition
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Taylor expansion of the external potential

The integral solution of (5)[Appendix III]:

=-G ) 47 32
[ 2
Consider a field point 7 that lies outside the matter distribution.
With |7'| < |F|, we carry out a Taylor expansion of |[F — 7/|~1 in

powers of 7'

1 U o (1N 1 1
N W Sixkge, (2 ) — ...
|¥ — 7| r x J(r>+2x X%k r
1

. 1 1, 1
_ g [ = kg, [ Z) — ...
p x4 0; <r> + 2X Ojk <r> (33)

with xb = xjuzde = xdiydz ... xe o = 8_]1]2"'][ = 81'18]2 - 8”
RINAEYENESHERFER
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Extension: STF Decomposition
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Taylor expansion of the external potential

Substituting (33) into (32) gives

> 1
¢ext = _GZ ﬁ‘ <r>

with

10 (¢) 1= / o(t, P )X D PP (35)
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Extension: STF Decomposition
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STF combinations

(36)
8J-nk = 8knj = ; (5jk — njnk)
We compute the derivatives of r~! by making repeated use of (36)

12
ojr—" = —njr

8jkr_1 = (3njnk — 5jk) r_3

a,-k,,r_ = — [15njnkn,, -3 (njék,, + nkéjn + nnéjk)] r—4

(37)
Obviously they are symmetric and tracefree except 9;r— 1.
(eg. 3 Ojppr—t = V20,r 1 = 9,V 1 =0)
We conclude that d.r~" is an STF tensor.(Opr! = 9;yr )
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Extension: STF Decomposition
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STF combinations

Conventionally, STF products of vectors such as / are obtained by
beginning with the “raw” products #n* - - - and removing
all traces, maintaining symmetry on all indices. Explicit
examples are

nU9) ik — Lok
3
nYkn) —pipkpn — 1 ((5jkn" + &k + 5k”nj>
5
nUknP) —pipk ppP %((an”np + 8" kP 5P pkp" 4 5K pl pP

+ 0% " + 6" nk) + — (76" 4 516P 4 §P5RT)

(38)

1
35
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STF combinations

General formula for such STF products:

[0/
plt) = plikie) = 37 (1P (20 —2p — DN
P (€ —2p)1(20 — 1)1(2p)! (39)

w §UU2 §i3Ja . . | §i2p—1J2p pi2p+1 pi2p+2 . . . pit)

The number of the independent components of nfL):

gt YT (LH)(E42) traceee o) 4 g
- STF identities:

il
nyyn't = CYEENIHGR, (40)
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Extension: STF Decomposition
00000000e000

STF combinations

Comparing (37) and (38), we find that 9;r—! = —n;r=2,
8jkr*1 = 3n<jk>r*3,and ﬁjk,,r’I = —15[70-;(,,)[’7

The general rule can be obtained by induction:

n
aur = oy r = (—1) (26 — 1)!!%31 (41)

Now we can express (34) as

o

24 - 1
et (t, F) = —GZ My >r€<+>1 (42)

and explain the reason for the angular brackets on /{1
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STF combinations

It = [ p’x'td3F denotes the "raw" multipole moments. In view of
(39), It differs from /L) by a sum of terms involving Kronecker
deltas, and these automatically give zero when multiplied by the
tracefree 9y r—t.(Hint : -+ §mhnd r—t = ... 9, _,V?r 1 =0)

As a result, we find that /L9, r—1 = I<L>8<,_>r_1

Generally, whenever an arbitrary tensor AL multiplies an STF
tensor By, the outcome is

ALByy = At By, (43)

where AL is the tensor obtained from AL by complete
symmetrization and removal of all traces.
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From STF to {Yim}

Using STF identities (40), we rewrite (42):

= (20— 1) 03
=0

[e.9]

NI
_ _GZ (2¢ . nHn /plrwn,<L>n<L>d37/I’_(Z+1) (44)
£=0 )

S
A

(20— 1) 0 _
— _GZ ( 6' ) /plrle (25 — 1)”Pé(u)d3l—,’/r (5+1)
prd ! 1l
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From STF to {Yim}

Since Pg( ) 2“_1 me_g ng(0/7 QD/) ng(e, 90)1

Yim(0,¢)
— {4 2 m ;90
¢=- 2€+1 /</pY€m(9’ ')d9’>f'df're+1
Yim(0, )

_ /E L2y Im
__GZQE+1 PPt
_ 4 Yfm(e’ )

(45)
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Appendix |

— — — ]_ 7
VxE=Vx /”(’)ﬁd?’?
ey Jy n?

= o [ ()| o7

Using Cartesian coordinate bases and calculating the components:

~ i k 1k
= (A\] _ i 9 xF =X
()] =

ey -390
_ J k 1k n
_€k<’,73+(X — X )F@ (47)
o —3x — X!
:—é—i—euk(xk—xlk)TJ 4
n n n

(46)

The first term of (47) is obviously zero.
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Appendix |
(The second term) = ;Se'jk(xk — x")(x — x])
3 .
= 220,k =
=3k kvl
= —¢€  (x = xM)(x —x
PO
/ik %Eikl(x X/l)(Xk o X/k)
n
-3

= ) (—Ei/k) (x* = x")(x" = x'")
= —(The second term)
So the second term of (47) is also zero.
— [ﬁx <%)]I:O—>ﬁx5:0
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Appendix Il

We take the divergence of the both sides of (3)
. L. L 1 7
V2=V - E=V. < / p(g)ﬁd?)?)
471—60 v 7N (49)

- 47360 /\/ [ﬁ' (:2” oFYT

If n #£0,
= (n)_ 0 x' — x"
v (772) 3X’< 3
5 C i 33X —x!
:—I—‘— X’—X’ —_— ! (50)
) T
2
n n

So V- <n%> is zero everywhere except = 7.
RN KL L SHAZR
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Appendix Il

Now we calculate a volume integral in a sphere of radius
R,centered at 7

Therefore,

(51)

(52)
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Appendix Il

The right-hand side of (49):

A

e o [9 ()| o = 3o | om0 267
p(7)

€0
(53)
So (49) becomes:
62(p:_p(r) (54)
€0

KXAFMERZEREARZER

ATE
Newtonian Potential & Multipole Expansions 37 / 46




Appendix
000000800000

Appendix Il

Method 1: Green's Function[1]
Method 2: Fourier Transform

V3¢ = ArGp (t,F) (55)

Using Fourier's trick,
F [ﬁ% (t, ?)] = [(iky)? + (ik2)? + (iks)?] @ (t, /}')
Fp(t,7)] =R (t, E)

We get
o (t, /?) - —LL;(T—QGR (t k) (56)
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Appendix Il

Now performing an inverse Fourier transform
o(t,7) = FL [cp (t, E)]

4G [ 1 (N fr s
:( ”)3/ ER(t,k) eFTd3k
2m)2

The internal integral can be calculated by using spherical
coordinates.
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Appendix Il

Making the direction of k3 parallel to 7 — 7, then

9] eik-(?ff") - +o0 2m " )
/ ——d k:/ dk/ dgp/ d sin ge™I7 ="l cos

O=m

oo ik|r— FlcosO |
=27 _ dk
0 ik|F — 7|
0=0

:47r/+oo wdk
IEd

—+o0
_ / smada
!r— r’!

P

(58)
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Appendix Il

Combining (57) and (58), we get

o(t,7) =—G/V Md?’? (59)
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Appendix IV

Spherical harmonics satisfy the eigenvalue equation:

1 9 . 0 1 02
(Sineag S1n 9% + 751112 98302> Y@m = —g(é + 1)ng (60)

they are given explicitly by

Yom(0, ) = \/% L= M) o os gy eime (61)

A (04 m)!
where 4
PP (x) = (—1)"(1 = )% 2 Py(x) (62)
¢
) = iy (= 1) (63)
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Appendix IV

Orthonormalization relation:

Closure relation'

Z Z Yem(0, ) Yin(0',0") = §(cos 0 — cos0')d(p — ')
=0 m=—¢ (65)
= 60— #)3(p — &)

sin 6
Spherical-harmonic decomposition:

00 V4
0 90) = Z Z fémyfm(e
(=0 m=—¢ (66)
fim = [ £(6,9)Yin(6,9)d9
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