
I.1 The Role of Statistical Inference
I.1.0 Loredo's Lead-in
I.1.0.1 What is probability

p : x ↦ p(x) is a map that
takes a value of a random variable to its image p(x)
we are asking the interpretation of p(x)

Frequentists' viewpoint:
p(x) is the frequency of x in the ensemble
from frequentists' perspective, the values of random variable is distributed

Bayesian's viewpoint:
p(x) is the probability that the random variable's value is x
from Bayesian's perspective, the "random variable" has a single value, probability is distributed

I.1.0.2 Essentials from logic

Construct arguments with propositions and logic connectives.

proposition

A proposition is a statement that is either true or false

logic connective

argument

H|P : premise P implies hypothesis H
notice both H and P are propositions

Validity and Soundness of An Argument

Validity：
An argument is said to be valid, if: H is true given P is true.
The validity of an argument only concerns its form rather then content

Factually Correct
An argument is said to be factually correct if its premise P is true.
This concerns only the content of an argument rather than form.



Soundness：
An argument is sad to be sound if it's both factually correct and valid.

Integer Representation of Deduction

Denote V  a map such that sends valid argument to 1 and invalid argument to 0.
Then we have:
V (A ∨B ∣ P) = V (A ∣ P) + V (B ∣ P) − V (A ∧B ∣ P)

V (A ∧B ∣ P) = V (A ∣ P)V (B ∣ P)

Extend IR of Deductions to RR of Inductions

To measure the strength of argument, we want to construct a map P(H|P) such that

Let P(H ∣ P) be a map that assigns the value 1 to valid arguments and 0 to invalid arguments.
We aim to construct a map that assigns a real number between 0 and 1 to inductive arguments,
where the value assigned to an inductive argument reflects its degree of reliability.

To construct such a map, we draw inspiration from the properties of a mapping in the previous
"deductive arguments" context, which assigns integer values:

The only thing we need to modify is the product rule:
P(A ∧B ∣ P) = P(A ∣ P)P(B ∣ A,P)

Why make this modification?
Suppose that A implies B, namely P(B|A) = P(B|A,P) = 1, then we don't expect P(A,B|P) to
differ from P(A|P); but if we use the product rule for validity, the RHS of P(A,B|P) would be
P(A|PP(B|P)) which differs from P(A|P) by a scaling factor P(B|P) which is not generally 1.

Surprisingly, we find that the two dominating rules (product rule (AND), sum rule (OR)), coincide
with those of probability theory. We thus steal everything from probability theory.

1. For an argument leading to an "and" proposition, its validity/strength is equal to the product
of:

The validity/strength of the argument "the same premises derive A";

The validity/strength of the argument "premises +A can derive B".

2. For an argument leading to an "or" proposition, its validity is equal to:
The validity/strength of the argument "the same premises can derive the sub-
proposition A";
Plus the validity/strength of the argument "the same premises can derive the sub-
proposition B";
Minus the validity/strength of the argument "the same premises derive the 'or'
proposition".



I.1.1 Goal and Methodology of Science
Roughly speaking, the ultimate goal of (the majority) of physicists is to find the rules that rule
everything of our universe, from these rules we can describe the real world by a
mathematical model such that explain or predict measurement/experiments...
This can be concluded as: physicists make arguments.

I.1.2 Parameterized Hypotheses
Assume that hypotheses can be parameterized by a set of (finite or infinite number of)
parameters →λ = (λ1,λ2, . . . ), thus we may consider a hypothesis as a vector in some multi-
dimensional vector space.
Assuming our universe allow only one unique set of rules, thus only one hypothesis could be
true. Then, given we know enough facts of our universe, then a hypothesis can either be true or
false, namely the probability density P(→λ0|D) for any specific →λ0 would be either 0 or +∞, where
D is a data set sufficiently abundant. Now that we only have access to a limit range of facts (by
using the word facts, we assume there is no bias), we may expect the probability density
P(→λ|D) to be spread in some subspaces of the space of →λ, instead of being a Dirac delta
function at some unique point.
And we expect that:

A ∫ P(→λ|D)d→λ = 1

Then, given a set of observational facts D, P(→λ|D), from probability theory, is the probability
density that hypothesis labeled →λ is true, given D is true.
Now our question become how to calculate this quantity, the answer is through Baye's
theorem.

I.1.3 Bayes Theorem
By making one single presumption that physical hypothesis can be parameterized, we can
now transplant all frequentists' theorems from probability theory to Bayesian inference.
Among which the most important one is Bayes's Theorem:

P(A|B) =
P(A,B)
P(B)

=
P(B|A)P(A)

P(B)

Now let's substitute A by parameters →λ of hypotheses and B by observational/experimental
facts D:

P(→λ|D) = P(→λ)
P(D|→λ)
P(D)

=: π(→λ)
L(D|→λ)
E(D)



the quantity on LHS is called posterior distribution of parameters; and on RHS we:
take P(→λ) out and denote it by π(→λ) (prior) because this distribution can be derived from
nowhere, this distribution has to be chosen manually prior to our observation (where we get D),
in a sense this quantity is dependent to the parameterization of the multi-dimensional vector
space of hypotheses
we denote P(D|→λ) by L(D|→λ) (likelihood) because this function represents that likelihood
(probability density) that our observation give output valued D (consider D some specific value)
when hypothesis →λ is true.

Thus the essential question lies on the computation of likelihood L(D|→λ). For event-level
inference, this is rather simple:
For example, we want to estimate the mass m of an astrophysical object from its
observational data D.
Which means our hypotheses are 'the mass of the object is m = m0' where m0 varies for
different hypotheses, and thus the hypothesis is parameterized by a single parameter m.
For any given input value m = m0, the output of our observational instrument is not a unique
value D0, but is spread in some range D, and the probability that our instrument pop up with
D ∈ D is characterized by some distribution fm0(D), i.e. the probability density that our
instrument pop up D given the true input is m0. From this definition, we realize that this function
- characterizing the intrinsic property of our instrument - is the likelihood function we are
looking for.

This can be easily generalized to multi-parameter inference.
But what if we want to estimate the hypotheses on the distributions of these event-level
parameters?

I.2 Hierarchical Inference
For simplicity, we denote the parameters of event-level hypotheses by θ, I'm omitting the vector
symbol but it should always be recognized as a vector.

What happens if we want to make a hypothesis on the distribution of these parameters?
For examples, the event-level parameters of LIGO's BBH merger detections includes
component masses m1,m2 and effective spin χeff , one may wonder if the shape of the
distribution of m1 among the BBH population, and make hypothesis like 'the primary mass
distribution of BBH merger follows a power law whose index is α = α0', and thus these
population-level hypotheses can be parameterized by α, and we call α the hyper-parameter
of these hypotheses. A specific type of hyper-parameterized population-level hypotheses on
BBH population is called a population model. (for instance, power-law model; Gaussian-peak
model, ...)



To distinguish population-level hyper-parameters from parameters of specific events, we
denote:
Hyper-parameters of a population model by Λ or →Λ
Parameters of an event by θ or →θ
To determine the supportiveness our question become how to calculate the posterior of
hyper-parameters.

Thanks to our effective notation, this can be easily done by transplanting formulae from
probability theory:

P(Λ|D) = p(Λ)
P(D|Λ)
p(D)

Again, p(Λ) is prior which we have the 'freedom' to choose, and the evidence P(D) is a
constant for fixed D in practice, so the likelihood P(D|Λ) is the only distribution of interest. And
this can be easily expressed as marginalization:

P(D|Λ) = ∫ P(D|θ, Λ)P(θ|Λ)dθ = ∫ P(D|θ)P(θ|Λ)dθ

where the first equality is a general identity from probability theory, and the second stands at
the probability distribution of getting D is determined by given θ and irrelevant of Λ once θ are
given.
Now what left on RHS undetermined are P(D|θ) (which represents instrumental properties) and
P(θ|Λ) (which represents population model properties), thus all knowledge used to determine
the posterior distribution are accessible to us.

I.3 Including Selection Effect
What indeed is the (values) of posterior P(Λ|D) stand for in the last section? According to our
interpretation introduced in I.1.2 Parameterized Hypotheses, it is the probability density of
'hypothesis labeled Λ0 be true' given 'the observations give Dobs = D0'.
But According to our interpretation, the more background knowledge we have the better we
can constrain the hypotheses. What additional background knowledge we have ignored in
the calculation above? That is, in our dataset D = {Di} in practice, we don't include outputs
of all detections, actually the data set D is sampled from a larger data set, according to some
rule of sampling which we denote S. (In practice, this S often means excluding data such that
SNR lower than some threshold value.)
So, to include as more background information as possible, we shall either target at P(Λ|D∗)

where D∗ is the complete data set, or P(Λ|D,S) where S is our knowledge on sampling
procedure.

First Approach



Let's first try P(Λ|D∗), whose calculation is in essence calculation of likelihood P(D∗|Λ). to
solve for which we simply replace D by D∗ in the last equation given in I.2 Hierarchical
Inference:

P(D∗|Λ) = ∫ P(D∗|θ, Λ)P(θ|Λ)dθ = ∫ P(D∗|θ)P(θ|Λ)dθ

But are these all background knowledge we could use? No, we have additional knowledge
that D∗

i ∈ D∗ such that its SNR lower than some value are meaningless, which means the
second approach actually constrain the hypotheses better.

Second Approach

We thus move to the second approach: targeting at P(Λ|D,S). Again what we are actually
solving for is the likelihood:

P(D|Λ,S)

which stands for the probability density distribution of sampled data, given Λ,S. In other words,
the values of this function at each D0 is equal to P(Dsampled = D0|Λ,S), but this is equal to
P(Ddet = D0|Λ,S, detection be sampled). we calculate this by inverse the product rule:

P(Ddet = D0|Λ,S, detection be sampled) =
P(Ddet = D0, detection be sampled|Λ,S)

P(detection be sampled|Λ,S)

Let's first look at the numerator, by product rule:

P(Ddet = D0, detection be sampled|Λ,S) = P(dbs|Ddet = D0, Λ,S)P(Ddet = D0|Λ,S)

where the first term is always equal to 1 for any D0 in our sample set, while the second term
can be calculated by calculated by marginalization, thus we conclude:

numerator = P(Ddet = D0|Λ,S) = P(Ddet = D0|S)

which can be easily calculated by marginalization over θ.

Now let's move to the denominator, which should again be calculated via marginalization:

P(dbs|Λ,S) = ∫ dθ ⋅ P(dbs|Λ,S, θ)P(θ|Λ,S)

where P(dbs|Λ,S, thets) = P(dbs|S, θ) is the probability that the detection of an event of
parameter θ be sampled, given sampling rule S; and P(θ|Λ,S) = P(θ|Λ).
Thus we conclude:



denominator = ∫ dθ ⋅ P(dbs|θ,S)P(θ|Λ)


