
A01X. 切空间，余切空间，外积，k形式（场）
带有X标记的章节是原章节的拓展内容，忽略此内容原则上对后续阅读没有影响
但强烈建议在此前对于原章节涉及的内容没有知识储备的情况下阅读X章节

一、（流形上的）切向量与切空间

I. 切向量

切向量：直觉

在欧几里得空间 Rn 中，向量可视为“从某点出发的有向线段”或“箭头”，即一种方向与大小的表
示。然而在一般光滑流形 M 上，整体空间不再线性，不能直接沿直线平移向量。但我们仍可在
每一点定义“某方向上的运动趋势”。

切向量：严格定义

定义流形上某点 p ∈M 上的切向量
有两种等价但本质的方式：

（1）几何定义

设 M 是一个 n 维光滑流形，p ∈M 是其中一点。
我们定义 p 处的一个切向量为以下等价类中的一个元素：

令 Cp 表示所有在 p 处通过的光滑曲线，即满足：

Cp := {γ : (−ε, ε) →M | γ 是 C∞ 曲线，且 γ(0) = p}

定义如下等价关系 ∼：对任意 γ1, γ2 ∈ Cp，若对 M 的任意光滑坐标系 (U ,φ) 满足 p ∈ U，

有：

d

dt
(ϕ ∘ γ1)(t)

t=0
=

d

dt
(ϕ ∘ γ2)(t)

t=0
,

则称 γ1 ∼ γ2，它们属于同一个等价类。

p 处的切向量是某一等价类 [γ]，记作：

v = [γ] ∈ TpM

几何定义：曲线等价类 [γ]，表示“从 p 出发的某种方向”；
代数定义：作用在 C∞(M) 上的满足 Leibniz 规则的导数 v

∣ ∣



（2）代数定义

我们可以将“切向量”看作是一种在某点处的微分算子，它以局部方式作用在光滑函数上

p 点处的一个切向量是一个线性映射：

v : C∞(M) → R

满足以下Leibniz 规则（乘积法则）：

v(fg) = v(f) ⋅ g(p) + f(p) ⋅ v(g), ∀f, g ∈ C∞(M)

即：

切向量：集合定义和代数定义的等价性说明

几何定义中曲线等价类 [γ] 可诱导一个导数算子：

v[γ](f) :=
d

dt
(f ∘ γ)(t)

t=0

这个 v[γ] 满足上述乘积法则，因而是一个切向量。

反之，任意满足乘积法则的线性映射 v，都可以构造出一条诱导该导数的曲线 γ。
因此，几何定义与代数定义是自然等价的，下面我们还将说明，两者定义出同一个向量空间 TpM

。

局部坐标诱导的切向量（基）{ ∂
∂xa }

设 M 是 n 维光滑流形，p ∈M。

令 (U ,ϕ) 是 p 的一张坐标图，其中：

ϕ : U → Rn, ϕ(q) = (x1(q),… ,xn(q))

在这个局部坐标图下，我们可以定义 p 处的 n 个特殊的切向量：

∂
∂xi

p

, i = 1,… ,n

v 是定义在所有光滑函数上的线性算子；

它测量的是函数在点 p 沿某方向的导数；
并且满足导数的乘积法则。

∣
∣



其作用定义如下：

∂
∂xi

p

(f) :=
∂(f ∘ ϕ−1)

∂xi
ϕ(p)

, ∀f ∈ C∞(M)

这些算子是将函数 f 先拉回 Rn，再对坐标函数求偏导。

在此吗我们不加证明地指出：

这些向量满足：

II. 切空间 TpM ：切向量的集合

（1）几何定义

TpM := {[γ] | γ : (−ε, ε) →M,  γ(0) = p}/ ∼

其中等价关系 ∼ 定义为：任取局部坐标图 ϕ : U → Rn，若

d

dt
(ϕ ∘ γ1)(t)

t=0
=

d

dt
(ϕ ∘ γ2)(t)

t=0

则称 γ1 ∼ γ2。

等价类 [γ] 被称为一个切向量，全体等价类构成 TpM。

（2）代数定义

TpM := {v : C∞(M) → R | v 满足线性性与 Leibniz规则}

即：v 是定义在光滑函数上的导数算子，满足：

∣ ∣
每个 ∂

∂xi p
 是代数定义下的切向量；

∣

这 n 个向量在线性代数意义下线性无关；

它们构成切空间 TpM 的一个基底。
因此，任意切向量 v ∈ TpM 可唯一写为线性组合：

v = vi
∂
∂xi

p

其中 vi ∈ R 是该切向量在坐标基下的坐标分量。

我们称 
{

∂
∂x1 p

,… , ∂
∂xn p
}

 为 TpM 的自然坐标基。

∣∣ ∣
∣ ∣

线性性：v(af + bg) = av(f) + bv(g)；



我们称这样的 v 是定义在 p 处的切向量，全体这类算子也构成 TpM。

切空间 TpM 是向量空间

切空间 TpM 上的加法与数乘定义如下：

III. TpM 上的自然基：由流形上的局部坐标图诱导

若 (x1,… ,xn) 是 p 附近的局部坐标系，则

{

∂
∂x1 p

,… ,
∂
∂xn

p

}

构成 TpM 的一组自然基。

任意切向量 v ∈ TpM 可表示为：

v = vi
∂
∂xi

p

IV. 切空间 TpM 的直观理解

Leibniz 规则：v(fg) = f(p) ⋅ v(g) + g(p) ⋅ v(f)。

加法：

对任意 v,w ∈ TpM，定义其作用为

(v+ w)(f) := v(f) + w(f), ∀f ∈ C∞(M)

数乘：

对任意 a ∈ R，v ∈ TpM，定义

(av)(f) := a ⋅ v(f), ∀f ∈ C∞(M)

这个定义满足向量空间的八条公理，因此 TpM 是实向量空间

∣ ∣∣
TpM 描述了在 M 的点 p 附近，“所有可能的运动方向”。
可以将 TpM 看作是“流形在点 p 的一次线性近似”。

若 M = Rn，则 TpM ≅Rn，但在一般流形中 TpM 只在 p 处与 M 相切，不能自然延拓到整
体。



二、余切空间 T ∗
p M

I. 余切空间 T ∗
p M 是切空间 TpM 的对偶空间

设 M 是一个 n 维光滑流形，p ∈M 是其中一点。
我们定义 p 处的余切空间（cotangent space） 为：

T ∗
p M := Hom(TpM,R)

即：T ∗
p M 是所有从 TpM 到 R 的线性映射构成的集合。

换句话说，余切空间的元素是作用在切向量上的线性函数（线性泛函），通常称为余切向量

（cotangent vector） 或 协变向量（covector）。

T ∗
p M := Hom(TpM,R) 其中 Hom(TpM,R) 是切空间到实数域的“同态映射”的集合；
由于切空间是向量空间，因此切空间到实数域的同态映射是“线性映射”；因此余切空
间上的点（称为余切向量或协变向量）本质上是切向量的线性泛函

余切向量（协变向量）= 切向量的线性泛函

II. 余切空间 T ∗
p M 的向量空间结构，自然配对

T ∗
p M 构成一个实向量空间

自然配对

余切向量 ω ∈ T ∗
p M 和切向量 v ∈ TpM 的自然配对定义为：

⟨ω, v⟩ := ω(v) ∈ R

这个配对满足双线性性（对两个分量都线性），是几何和分析中非常基本的构造。

III. T ∗
p M 上的自然基（自然对偶基，坐标 1-形式）：由局部坐标图诱

导

T ∗
p M 是一个实向量空间；

若 TpM 是 n 维的，则 T ∗
p M 同样是 n 维；

T ∗
p M 是 TpM 的对偶空间，两个空间间可通过自然配对建立联系。



给定局部坐标图，可以通过和该点的局部坐标基 {∂a|p} 的对偶关系诱导该点的余切
空间 T ∗

p M 的一组基 {dxa|p}，称为自然对偶基

设 ϕ : U ⊂M → Rn 是流形 M 上的一个局部坐标图，诱导出局部坐标函数 (x1,… ,xn)。则对于

每一点 p ∈ U：

余切空间的自然对偶基 dxa|p 被称作 TpM 上的坐标 1-形式（coordinate 1-forms
on TpM）

问题：什么是向量空间（微分流形语境下特指切空间）上的（坐标）1-形式？下文介
绍

三、（向量空间上的）1-形式，（流形上的）1-形式场
I. 向量空间上的 1- 形式

V  上的 1-形式 ω : V → R,ω ∈ Hom(V ,R) = V ∗

设 V  是一维或有限维实向量空间，V ∗ 是其对偶空间，即：

V ∗ := Hom(V ,R)

那么 V ∗ 中的元素称为 V  上的1-形式，即：

1-形式是一个线性函数：

ω : V → R, ω ∈ V ∗

切空间 TpM 的自然基（局部坐标基）可以通过局部坐标图诱导（具体定义见上文），把切空
间的这组基记作：

{

∂
∂xi

p

}

n

i=1

∣

我们希望通过 自然对偶 定义余切空间 T ∗
p M 对应的一组基，记作：

{dxi

p
}

n

i=1

定义这组基的方式为要求它们满足对偶关系：

⟨dxi,
∂
∂xj

⟩ = δij

我们称余切空间 T ∗
p M 上如此定义的一组基为一组 自然对偶基 或称为

∣



也可称为协变向量（covector）或线性泛函。

对偶空间的自然基 {eb} 是 1-形式，任何 1-形式都可以写成这组基的线性组合

II. 切空间上的 1- 形式

TpM 上的 1-形式：定义

设 M 是一个光滑流形，p ∈M 是其中一点，TpM 是该点的切空间。

TpM 上的 1-形式定义为：

T ∗
p M := Hom(TpM,R)

中的元素，即所有从 TpM 到 R 的线性映射的集合。

换言之，T ∗
p M 是 TpM 的对偶空间，它的元素称为：

坐标 1-形式：dxa

设 ϕ : U ⊂M → Rn 是 p 附近的一个局部坐标图，ϕ(p) = (x1,… ,xn)。

由 ϕ 诱导出切空间的基：

{

∂
∂x1 p

,… ,
∂
∂xn

p

} （记作  {∂i|p}）

可以证明 T ∗
p M 上自然有一组对偶基，记作：

{dx1|p,… , dxn|p}

在 V = Rn 上，任意 1-形式 ω ∈ V ∗ 都可以唯一表示为：

ω = a1 dx1 +⋯+ an dxn

其中 {dxi} 是对偶基，ai ∈ R。
对任意 v = (v1,… , vn) ∈ Rn，该 1-形式的作用为：

ω(v) = a1v
1 +⋯+ anv

n

p 点处的 1-形式；
或 协变向量（covector）；
或 线性泛函。

∣ ∣



使满足对偶性：

dxi|p(
∂
∂xj

p

) = δij

III. 光滑流形上的 1- 形式场

M 上的 1 - 形式场：定义

设 M 是一个光滑流形。1-形式场是一个将每一点 p ∈M 赋予一个 T ∗
p M 中 1-形式的光滑映射，

即：

ω : p↦ ωp ∈ T ∗
p M,

满足对任意光滑函数 f ∈ C∞(M)，ω(f) 是一个光滑函数。

这样的 ω 被称为 M 上的一个 1-形式场 ，记作：

ω ∈ Ω1(M)

其中 Ω1(M) 表示 M 上所有 1-形式场构成的集合，是一个 R 上的 C∞(M)-模。

1-形式场的坐标表示

设 ϕ : U ⊂M → Rn 是局部坐标图，则在 U  中有自然坐标函数 x1,… ,xn。

对任意 1-形式场 ω，它在坐标系下可以表示为：

ω = ωi(x) dxi

其中：

四、外积（Wedge Product）
在构造 k-形式空间之前，我们必须引入一个核心代数操作 —— 外积。它是一个在对偶空间上定
义的反对称张量积运算，是 k-形式结构的代数基础。

I. 外积 ∧ 的引入动机

∣
{dxi} 是由坐标诱导的 1-形式基；
系数函数 ωi ∈ C∞(U)；

ωp = ωi(x(p)) dxi|p 是 p 点处的 1-形式



我们为何需要外积？

举例：在面积的几何表达中，(v1, v2) 与 (v2, v1) 所定义的有向面积相反，普通张量却无法体
现这一点。

也就是说，我们希望构造一种函数：

ω : V × V ×⋯× V → K, 线性于每个参数

其中 ω 接受 k 个向量作为输入，是一个 k 重线性函数。
此外，我们还希望这个函数具有如下性质：

II. 外积 ∧ 的定义：是对偶空间上的反对称张量积运算，是用于构造 k
-形式（反对称张量）的代数结构

定义：（1-形式的）外积

设 f1,… , fk ∈ V ∗，定义它们的外积为如下函数：

f1 ∧⋯∧ fk(v1,… , vk) :=∑
σ∈Sk

sign(σ) ⋅ f1(vσ(1))⋯ fk(vσ(k))

其中：

该定义下，f1 ∧⋯∧ fk 是一个满足：

（1）对偶基 {eb} ⊂ V ∗, {eb} ⊂ Λ1V ∗ 的外积

我们已经知道，流形上的 1-形式是“作用在切向量上的线性函数”。

如果我们想表达“作用于多个切向量的联合结果”，例如面积、体积或流量，就必须构造高阶形
式。

但普通张量积不能区分这些几何量的“方向感” —— 也就是说，它们没有反对称性。

只要有两个输入相等，则结果为 0；
交换任意两个输入，会改变符号。

这就引出了“外积”的定义，它构造出满足这些反对称性的多线性函数。

Sk 是 k 个元素的置换群；
sign(σ) 是置换的符号；

每一项都是将 fi 作用在不同顺序排列的 vj 上。

多线性性（对每个 vi 变量线性）；
完全反对称性（交换任意两输入变号，输入中有两个相等则为零）。



（2）外积取值于 ΛkV ∗ ，即 V ∗ 上的 k 重反对称张量空间

我们称 ΛkV ∗ 为：

V ∗ 上的 k-重反对称张量空间，或简称 k-形式空间。

其元素称为 k-形式（on V），是 V  上的 k-重线性反对称函数，稍后我们将详细介绍这类张量

五、对偶空间的张量积，向量空间上的 k - 形式，外积
概念的延拓

I. 对偶空间的张量积

(V ∗)⊗k ：对偶空间 V ∗ 的 k 次张量积空间

设 V  是一维数为 n 的实向量空间，V ∗ 是其对偶空间。

我们考虑 V ∗ 的 k 次张量积空间：

(V ∗)⊗k := V ∗ ⊗⋯⊗ V ∗

k 次

它由所有 k-线性映射：

ω : V ×⋯× V

k

→ R

组成，要求这些映射使得每个输入方向都线性。这里的元素称为 协变 k 阶张量（covariant k-
tensor）

注意： 此空间中的元素没有对称性或反对称性要求。
后续我们将专注其反对称子空间，即所谓的 k-形式。

ω ∈ (V ∗)⊗k ： k 阶协变张量

II. 向量空间上的 k - 形式

考虑向量空间 V  和其对偶空间 V ∗，对偶基 {eb} 显然是 1-形式，即 {ea} ⊂ Λ1V ∗ ，因此可以
定义两个对偶基的外积：

外积定义为：

ea ∧ eb = ea ⊗ eb − eb ⊗ ea

因此，它们组合成一个 二阶反对称张量，稍后我们将说明这是一个 2-形式。


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向量空间上的 k -形式：定义

一个 k-线性映射 ω : V k → R 是一个 k-形式，当且仅当：

ω(vσ(1),… , vσ(k)) = sgn(σ) ⋅ ω(v1,… , vk) ∀σ ∈ Sk

即：对任意置换，符号改变导致符号翻转。

特别地：

定义重述：一个 k-形式就是一个定义在向量空间 V  上的 k 阶完全反对称协变张量

k-形式构成的集合： ΛkV ∗ ⊂ (V ∗)⊗k 称为向量空间 V  上的 “k-形式空间”

我们定义 (V ∗)⊗k 的一个子空间，包含所有完全反对称的 k-线性映射，称为 V  上的 k-形式空间，
记作：

ΛkV ∗ ⊂ (V ∗)⊗k

k - 形式的表达方式与基底

若 V  是 n 维向量空间，{ei}ni=1 是 V ∗ 的一组基，则：

{ei1 ∧⋯∧ eik 1 ≤ i1 <⋯ < ik ≤ n}

构成 ΛkV ∗ 的一组基，其中 ∧ 为外积

III. 外积概念的拓展：从 1-形式到一般 k-形式

我们在前一章中定义了外积 ∧ 为 1-形式之间的一种二元乘法，其结果是高阶形式，如：

α ∧ β ∈ Λ2V ∗, 其中 α,β ∈ Λ1V ∗

该定义可以自然拓展为：

∧ : ΛpV ∗ × ΛqV ∗ → Λp+qV ∗

满足以下基本性质：

如果交换任意两个输入向量，则符号翻转；

如果两个输入向量相等，则 ω = 0；

因此是“斜对称张量”。

∣
1. 双线性性：

(ω1 + ω2) ∧ η = ω1 ∧ η+ ω2 ∧ η, ∀ω1,ω2 ∈ ΛpV ∗

以及类似地对第二个因子成立。



任意 k 形式都可以（唯一）写作 1-形式基的外积的线性组合

上述性质确保了外积提供了一个自然的乘法结构，使得 ⨁n
k=0 Λ

kV ∗ 成为一个反交换代数
（graded anti-commutative algebra），这在微分形式和外微分等结构中将起核心作用。
特别地，任何 k-形式 ω ∈ ΛkV ∗ 都可以唯一写成如下形式的线性组合：

ω = ∑
i1<⋯<ik

ωi1⋯ik ⋅ e
i1 ∧⋯∧ eik

其中 {ei} 是对偶基，ωi1⋯ik ∈ R 是系数。

六、余切空间的张量积，流形上的 k-形式（场）
I. 余切空间的张量积空间：k 阶协变张量构成的空间

(T ∗
p M)⊗k ：余切空间 T ∗

p M 的 k 次张量积空间

设 M 是一 n 维光滑流形，p ∈M 为一点。记 T ∗
p M 为 p 点处的余切空间。

对任意正整数 k，我们定义 T ∗
p M 的 k 次张量积空间为：

(T ∗
p M)

⊗k := T ∗
p M ⊗⋯⊗ T ∗

p M

k 次

这是 T ∗
p M 与自身的 k 次张量积空间

其元素称为 p 点处的 协变 k 阶张量（covariant tensors of rank k），它们是如下类型的多重线性
映射：

TpM ×⋯× TpM → R, （共 k 个 TpM）

即它们将 k 个切向量输入，输出一个实数，且关于每个变量线性。

ω ∈ (T ∗
p M)⊗k ：k 阶协变张量

T ∗
p M 中的元素是线性函数（作用在 TpM 上），而其 k 次张量积空间中元素是：

2. 反对称性：

η ∧ ω = (−1)pq ω ∧ η, ∀ω ∈ ΛpV ∗, η ∈ ΛqV ∗

这体现了形式的“全反对称性”。

3. 结合律（非交换）：

(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ)

外积不是交换的，但结合律成立。





一个 k 线性函数：

ω : TpM ×⋯× TpM

k 个

→ R

它是关于每个变量线性的，但没有对称性或反对称性要求。

这类张量可以用来构造更一般的张量场、差分形式、对称张量等。

II. 切空间上的 k-形式：完全反对称的 k 阶协变张量

张量积空间 T ∗
p M

⊗k 中的元素是任意的协变张量，而 k-形式是其中的一个子集：

III. 流形上的 k-形式场

在上一节中，我们定义了在某一点 p ∈M 上的 k-形式为切空间 TpM 上的完全反对称 k-线性映
射。现在我们将这一概念扩展为在整个流形 M 上变化光滑的几何对象。

定义：

一个 k-形式场（k-form field）是一个将流形上的每一点 p ∈M 映射到一个 k-形式 ωp 的规
则：

ω : p↦ ωp ∈ ΛkT ∗
p M

并且要求这个映射在流形意义下光滑变化。

其中记号 Λk(T ∗
p M) 表示余切空间 T ∗

p M 的第 k 外幂，也就是定义在流形上点 p ∈M 的切空间上
的 k 形式的集合

（1）k-形式场就是在流形的每一点选择一个 k 形式，并要求这种选择随流形上点的
变化是光滑变化的

k-形式场 ω ∈ Ωk(M) 可以直观地理解为：



所有完全反对称的协变张量构成外幂空间（Exterior power）：

ΛkT ∗
p M ⊂ T ∗

p M
⊗k

即：k-形式是满足交错性条件的 k 阶协变张量。



在流形 M 的每一个点 p ∈M，我们选择一个定义在切空间 TpM 上的 k-形式

ωp ∈ Λk(T ∗
p M)

并要求这种选择在 p 随流形变化时是 光滑的。

也就是说，k-形式场是将每个点处的 k-形式“拼接”在一起，形成一个全局的、光滑变化的几何对
象。

（2）所有光滑 k 形式场构成的空间 ΩkM 是对偶丛 ΛkT ∗M →M 上的光滑截面构成
的空间

所有这样的光滑 k-形式场构成一个空间，记作：

Ωk(M) := Γ(M, ΛkT ∗M)

它是对偶丛 ΛkT ∗M →M 的光滑截面空间。

局部表达：坐标系下的 k-形式场

若在 M 的某张坐标图 (U ,ϕ) 下，局部坐标为 (x1,… ,xn)，则余切空间的自然基为 {dxi}。

则一个 k-形式场 ω 在该图中的局部表达为：

ω = ∑

1≤i1<⋯<ik≤n

ωi1…ik(x) dx
i1 ∧⋯∧ dxik

其中：

特例与记号

*七、从切/余切空间到切/余切丛

每个系数函数 ωi1…ik(x) 是光滑函数；

dxi1 ∧⋯∧ dxik  是坐标1-形式的外积。

k = 0 时，0-形式场就是一个光滑函数；
k = 1 时，1-形式场是 T ∗M 的截面；

k = n = dimM 时，n-形式场可在 M 上积分，构成积分理论基础。



将每一点的切空间（或余切空间）拼接在一起：

它们是 M 上的向量丛，分别是向量场、微分形式的基础空间

项目 切空间 TpM 余切空间 T ∗
p M

类型 向量空间 对偶空间

元素 切向量（速度、方向） 线性函数（测量方向）

坐标基 ∂
∂xi dxi

全局拼接 切丛 TM 余切丛 T ∗M

物理解释（例） 粒子的速度、运动方向 力的作用方式，或动量的协变量

切丛： TM := ⨆p∈M TpM

余切丛： T ∗M := ⨆p∈M T ∗
p M


