
B02. 切映射

一、丛映射

I. 丛映射：定义

设 πE : E → B、πE ′ : E ′ → B′ 是两个光滑纤维丛。
若存在两个光滑映射：

满足如下交换图：

即满足 πE ′ ∘ Ψ = ψ ∘ πE

则称 Ψ 是从 E → B 到 E ′ → B′ 的一个 丛映射，记作：

(Ψ,ψ) : E → E ′ or simply Ψ : E → E ′ over ψ

核心要求：πe′ ∘ Ψ = ψ ∘ πE （丛映射后的投影等于投影后的底映射）

记号：ψ : B → B′ 是底空间的映射，Ψ : E → E ′ 是总空间的映射，习惯上称 Ψ 为 "ψ
上方的丛映射"

丛映射 Ψ 把每个纤维中的点 e ∈ Eb 送到对应底点 b 映射后所在的纤维 E ′
ψ(b) 中。 它

确保总空间的变化与底空间的映射兼容，像是纤维在“随底滑动”

II. 丛映射：性质

若 Ψ : E → E ′ 是一个 over ψ 的丛映射，则：

（1）纤维之间相互映射：Ψ(Eb) ⊂ E ′
ψ(b)

Ψ : E → E ′（作用在总空间）

ψ : B → B′（作用在底空间）

E → E ′

πE ↓ ↓ πE ′

B → B′

Ψ

ψ

1. 纤维之间相互映射：
对于任意 b ∈ B，我们有：

Ψ(Eb) ⊂ E ′
ψ(b)

即：每个点上纤维 Eb = π−1
E (b)，会被 Ψ 映射进 E ′

ψ(b) = π−1
E ′ (ψ(b))。



（2）若 ψ = idb，则定义在 E 上的截面可以被推送到 E ′ 上

III. 向量丛映射：丛映射的特殊情况

若 ψ 是微分同胚，且每纤维 Ψb : Eb → E ′
ψ(b) 是线性映射，则 Ψ 是向量丛映射。

这在向量丛或切丛之间很常见（例如 dΦ : TX → TY）。

（1）底空间间的映射 ψ : B → B′ 是微分同胚（即双射且正反函数均光滑）

（2）Ψ 对于限制在每条纤维时的情况 Ψb : Eb → E ′
ψ(b) ，要求该映射是线性映射

向量丛映射（直观）：向量丛映射是一个“跟着底空间变化、纤维上又保持线性结
构”的映射

二、切映射：定义

I. 前置：函数的拉回

函数的拉回（定义）：Φ∗f := f ∘ Φ

设：

则函数 f ∈ Y  关于 Φ : X → Y  的拉回（pullback）定义为：

也就是说：

这是最基础的拉回操作，常称为：

ϕ∗ : C∞(Y ) → C∞(X) 是函数环之间的代数同态。

1. 截面可以“推送”：
若 s : B → E 是 E 上的一个截面（即 πE ∘ s = idB），则：

Ψ ∘ s : B → E ′ 是 over ψ 的一个截面候选

但一般不是截面，除非 ψ = idB。

Φ : X → Y  是光滑流形之间的光滑映射；

f ∈ C∞(Y ) 是 Y  上的光滑函数。

Φ∗f := f ∘ Φ ∈ C∞(X)

把 Y  上的函数 f 通过 Φ 拉回到 X 上；

得到的复合函数 f ∘ Φ 仍然是 X 上的光滑函数。



函数的拉回（直观）：函数 f : Y → R 关于 Φ : X → Y  的拉回 Φ∗f 就是“绕着映射 Φ
先走再根据 f 取值”

II. 切映射 dΦ：构造动机

给定两个流形 X 和 Y，以及一个光滑映射 Φ : X → Y，

如何理解 Φ 在微分结构上的作用？
换句话说，如何让 Φ （诱导一个新映射）把 X 上的“方向信息”传递到 Y ”？

（1）动机来源：方向导数的传递

对于定义在 Y  上的任意光滑函数 f : Y → R，它在某点 y 上的“方向信息”就是 TyY  上的各种切向
量作用在该函数上的效果的信息；

同时我们知道，流形间的映射 Φ ，对于每一个光滑映射 f ∈ C∞(Y ) 都自然地诱导了一个拉回映
射 Φ∗f = f ∘ Φ：

f ∘ Φ : X → R

称为 f 关于 Φ 的拉回映射，且 Φ∗f ∈ C∞(X)；

同理可知该函数在某点 x 上的所谓“方向信息”就是 TxX 上的各种切向量作用于该函数的效果

我们希望作的是，能否通过 Φ : X → Y  诱导一个函数 dΦ : TX → TY，将任意 v ∈ TxX 被映射
到这样一个向量（记作 dΦ|x(v)）：

它应该能作用在 f，并得到与 v 作用在 f ∘ Φ 一致的结果，即：

这就定义了一个 TΦ(x)Y  上的切向量

（2）换句话说：给出流形间（点间）的映射 Φ，我们希望由它构造空间上“方向导
数”（即切空间中的切向量）之间的映射，使满足切向量的映射 dΦ|x(v) 作用于
f ∈ C∞(Y ) 等于切向量 v ∈ TxX 作用于函数的拉回 Φ∗f

Φ 把 x ∈ X 映到 y = Φ(x) ∈ Y，

那么 x 处的“方向” v ∈ TxX 应该被送到 y 处的“方向” (dΦ|x)(v) ∈ TyY，

使得它“看”任何函数 f : Y → R 的方式就是原来的 v 看 f ∘ Φ 的方式。

切映射：定义

(dΦ|x(v))[f] := v[f ∘ Φ]



回顾：构造切映射的核心

这个定义自然满足：

切映射：正式定义

设 Φ : X → Y  是光滑映射，则其微分 dΦ : TX → TY  是一个 丛映射，满足：

条件（2）更具操作性的等价表述：

（1）切映射是切丛间的丛映射

（2）切映射是线性映射 = 切映射满足 v[h ∘ Φ] = (dΦ|x(v))[h]

三、切映射：局部坐标表示
后文中我们尽量采用如下符号体系：

I. 切映射的局部坐标表示：问题设定

(dΦ|x(v))[f] := v[f ∘ Φ] for all f ∈ C∞(Y )

(dΦ|x) : TxX → TΦ(x)Y  是线性映射；
拼在一起得到一个总映射 dΦ : TX → TY，称为 Φ 的切映射。

(1) πY ∘ dΦ = Φ ∘ πX (丛映射条件)
(2) 对每个 x ∈ X, dΦ|x : TxX → Tϕ(x)Y  是线性映射

(2) 对每个 h ∈ C∞(Y ), v ∈ TxX, v[h ∘ Φ] = (dΦ|x(v))[h]

若光滑映射 Φ : X → Y，则

将映射定义域 X 上点的局部坐标记为 xi

将映射像空间 Y  上点的局部坐标记为 xa

将光滑映射的坐标表示记为 Φa, Φ(xi)a = ya

若 π : Y → X 是纤维丛，则
将底空间 X 上的点的局部坐标记为 xi

将全空间 Y  上的点的局部坐标记为 ya = (xi; yμ)，其中

将点在纤维 Yx 上的局部坐标记为 yμ

设 Φ : X → Y  是光滑流形之间的光滑映射；
x ∈ X，Φ(x) ∈ Y；



注意，这里我们直接将 底空间上的局部坐标图 写作分量形式 {xi} 其中
xi : X → R, i = 1, 2, . . . ,n；Y  以此类推；这么做的好处是在具体计算中带来记号上的便利

我们要求切映射满足 定义性质：

(dΦ(v))[h] := v[h ∘ Φ], ∀h ∈ C∞(Y )

我们想要明确求出 dΦ : TX → TY  的明确坐标表示，等效于求它在每条纤维上的行为
dΦ|x : TxX → TΦ(x)Y  的坐标表示，也就是求对于任意切向量 v ∈ TxX ：

dΦ(v) ∈ TΦ(x)Y 在坐标基下的表示.

也就是求 dΦ|x 如何将 v ∈ TxX 映到 wa ∂
∂ya Φ(x)

因此，所谓求切映射的局部坐标表示，就是想将切映射写作：

dΦ|x(v) = (dΦ|x)a(v)
∂
∂ya Φ(x)

同时由于我们知道 切映射是线性映射 ，我们可以预想到：

dΦ|x(v) = (dΦ|x)aiv
i ∂
∂ya Φ(x)

另外，在求切映射的局部坐标表示时，出于方便考虑，常将 dΦ|x 直接写作 dΦx 甚至 dΦ

II. 求解

为求上式中的 dΦa 或 dΦa
i ，只需在在定义性质 v[f ∘ Φ] = dΦ|x(v)[f] 中代入 f := yb 即可

RHS：dΦa(v)

LHS：vi ∂
∂xi [Φa(x)]

由于 yj 是 Y  的局部坐标，Φ : X → Y，所以：

ya ∘ Φ : X → R, x ↦ ya(Φ(x)) =: Φa(x)

即，记Φa := ya ∘ Φ 是 Φ 的第 j 个分量函数。
这部分信息是由 Φ 和 yj 给出的，在当前语境下是已知信息

结论：dΦa(v) = vi ∂
∂xi [Φa(x)]

{xi} 是 X 的局部坐标，维数为 n；

{ya} 是 Y  的局部坐标，维数为 m；
v ∈ TxX，其坐标表达为 v = vi ∂

∂xi x

∣
∣ ∣∣



比较等式两边，我们得到：

III. 结论

结论：切映射的局部坐标表达为

结论（另一种表述）

如果将 vi 视作一个（ n 行）列矩阵（考虑到在不存在前后关系的情况下，我们一般将上指标视
为行标），那么 dΦ|x 的坐标表示可以视为一个 m× n 的矩阵，则上式可以视为一个矩阵乘法表达
式：

dΦ(v) = (∂a)(dΦa
i)(v

i)

其中 (dΦa
i) 是一个 m× n 矩阵，(vi) 是一个 n× 1 矩阵；因此 (dΦa

i)(v
i) 是一个 m× 1 矩阵；而

∂a = (e1, e2, . . . , em) （可以想像为）是 TΦ(x)Y  上的基向量排成的 1 ×m 矩阵 ；因此整个矩阵积
得到的确实是 TΦ(x)Y  上的切向量。

直观表述：两个光滑流形间的映射对应的切映射 dΦ : TX → TY  ，在局部坐标下的
表达就是流形映射 Φ （对应的坐标映射）的雅可比矩阵（Jacobian matrix）

更准确地说：

dΦa(v) = vi
∂
∂xi

[Φa(x)]

dΦa(v) = vi
∂
∂xi

[Φa(x)]

dΦ(v) = (vi
∂Φa

∂xi
)

∂
∂ya

在局部坐标图中：

若 xi 是 X 上的坐标；
ya 是 Y  上的坐标；
且 Φ 的局部表达为：

ya = Φa(x1,… ,xn)



记号体系延伸：坐标变换与雅各比矩阵

这也是为什么物理中也常常将坐标变换 Φ 诱导的雅各比矩阵 J 记作 dΦ：

J i
j = (dΦ)ij :=

∂Φi

∂xj

其中 Φi : Rn → R 是坐标变换的分量表示

IV. 另一种求解思路

（1）由于 dΦ|x : TxX → TΦ(x)Y  是线性映射，要求其对任意切向量作用的坐标表
示，只需确定它对该点的切向量基的作用效果，即 dΦx( ∂

∂xi )

（2）类似上一种方法的过程，只需在切映射的定义性质 dΦ(v)[h] = v[h ∘ Φ] 中代入
h = ya 即可

（3）LHS = dΦx(∂i)[ya]，RHS = ∂i[Φa]

（4）我们的目标是求 dΦx(∂i) = (dΦx)bi∂b

（5）将目标式两端都作用于 ya，得到 LHStraget = LHS，RHStarget = (dΦx)ai

（6）由于目标式左边等于原式左边，可知目标式右边等于原式右边，因此有
(dΦx)ai = ∂i[Φa]

（7）回代回目标式得到 dΦx(∂i) = ∂i[Φa]∂a

结论

那么 dΦ|x : TxX → TΦ(x)Y  是一个线性映射，其在基底 
{

∂
∂xi } 与 

{

∂
∂ya } 下的矩阵表示就是：

J j
i(x) :=

∂Φa

∂xi

也就是说：

dΦ|x(v) = (

∂Φa

∂xi
(x) ⋅ vi)

∂
∂ya

dΦx(∂i) = ∂i[Φa]∂a



将 X 上的任意切向量 v = vi∂i 代入可恢复第一种方法得到的结论

V. 切映射的坐标表示：示例

设 Φ : R2 → R2，定义为极坐标变换：

Φ(r, θ) = (x, y) = (r cos θ, r sin θ)

则：

这就是坐标变换下的切向量变换。

四、截面 Φ : X → Y  的切映射 dΦ : TX → TY

对于任意流形间的光滑映射 Φ : X → Y，尽管其诱导的 切映射 dΦ : TX → TY  天然是丛映射；
但在切映射的定义中，并没有要求光环流形 X,Y  是一个纤维丛的底空间和总空间，Φ 未必是纤
维丛的截面。

但是，在理论力学语境下，我们更关心这样一类切映射：诱导该切映射的光滑映射 Φ 是一个纤维
丛 π : Y → X 上的截面 Φ : X → Y .

I. 截面切映射的定义和直观理解

给定一个光滑映射 Φ : X → Y，我们可以定义其 切映射 dΦ : TxX → TyY，它描述了在点 x ∈ X

处的微小变化如何通过 Φ 影响点 y = Φ(x) ∈ Y。

切映射 dΦ 是一个从 TxX 到 TyY  的线性映射，它将底空间 X 上的切向量映射到总空间 Y  上的切
向量。在几何上，dΦ 描述了底空间 X 和总空间 Y  中相应点的变化率。

II. 截面的切映射 dΦ|x ∈ Hom(TxX,VyY )

dΦ(v) = vi
∂Φa

∂xi
⋅

∂
∂ya

输入切向量 v = a ∂
∂r + b ∂

∂θ ∈ T(r,θ)R2

输出为：

dΦ(v) = (a cos θ− br sin θ)
∂
∂x

+ (a sin θ+ br cos θ)
∂
∂y

∈ T(x,y)R2

TxX 是底空间 X 上点 x 的切空间。
VyY  是总空间 Y  上点 y 处的垂直子空间，即与投影映射 π : Y → X 垂直的切空间。



我们指出（稍后证明）：dΦ 是一个从底空间切空间 TxX 到总空间垂直空间 VyY  的线性映射。它
满足线性映射的性质，并且通过映射 TxX 中的向量到 VyY  中的向量来实现。

（1）对任意切映射（不需要是截面的切映射），都有 dΦ|x : TxX → TΦ(x)Y

（2）截面切映射对坐标基向量的作用

引用 切映射 dΦ|x 作用于 X 的局部坐标基向量 {∂i} 的效果 的结论，即：

在该式中，若 Φ : X → Y  是一个截面，则等式右边

∂Φa

∂xi
⋅

∂
∂ya

=
∂Φj

∂xi
⋅

∂
∂xj

+
∂Φμ

∂xi
⋅

∂
∂yμ

= ∂i +
∂Φμ

∂xi
⋅ ∂μ

它的含义是：

想象你在一个山坡上散步，xi 是地面的坐标，而 yμ 是山坡的高度。

一个截面的切映射并不单纯平行于底空间，而是沿底空间方向前进的同时，根据纤维方向的变化

斜率向上或向下“偏移”

五、物理示例：二维质点
自由粒子在二维空间中运动，轨迹为：

ϕ(t) = (t,x(t), y(t))

则：

dΦx(∂i) = ∂i[Φa]∂a

第一项 ∂i：表示在 Y  中沿着 xi 的方向前进；
第二项 ∂Φμ

∂xi ⋅ ∂μ：表示前进时会附带地沿着纤维方向“上浮”或“下沉”。

沿 xi 方向前进时，你的路径不仅在地面上移动（∂i），也可能随着山坡的斜率 ∂Φ
μ

∂xi  而向上或
向下（∂μ）。

你并没有完全“离开”地面，而是“贴着地形”走，这种“贴地而动”的方式就是截面的几何本质。

微分映射为：

dϕ(t) : ∂t ↦ (1, ẋ(t), ẏ(t)) ∈ Tϕ(t)Y

拉格朗日函数定义在此点上：

L(t,x, y; ẋ, ẏ) = 1
2m(ẋ2 + ẏ2)



六、与 Jet 丛的联系
Jet 丛 J 1Y  会将：

“位置 q(t)” 和 “速度 q̇(t)” 一起打包进几何结构中，

而 dϕ 是构造 Jet 延拓 j1ϕ 的起点。

小结

项目 内容

定义 dΦ : TX → TY

坐标表示 dΦ(v) = vi ∂Φ
a

∂xi ⋅ ∂
∂ya

几何意义 描述轨迹的“速度向量”如何嵌入丛中

在力学中 是运动速度的编码；拉格朗日函数的输入之一

后续用途 构造 Jet 延拓、泛函导数、欧拉-拉格朗日方程等


