
D01. 拉格朗日密度

一、前置：一阶 Jet 丛 J 1Y  （回顾）
I. 局部截面构成的集合 Sx ，该集合上的一阶等价关系 ∼1

x，该等价关
系定义的等价类 j1x(Φ)，该等价关系定义的商空间 J 1xY := Sx/ ∼1

x

（1）给定光滑纤维丛 π : Y → X ，一个局部截面是一个与丛投影兼容的光滑映射
Φ : U → Y  ；记 Sx 为所有定义在 x 的某一邻域上的光滑局部截面所构成的集合

（2）在该集合上一可以定义一种等价关系（常称为一阶 jet 等价）∼1
x，两个截面被

称为“在 x 附近具有相同的 1 阶接触”，如果他们满足 “Φ(x) = Ψ(x)” 且 “
dΦx = dΨx : TxX → TΦ(x)Y ”

需要特别指出的是，定义该等价关系的第二个条件中，在 判断两个截面的切映射是否相等 时，
我们实际上 只需要判断两个截面的切映射在任意点作用于切向量基是否相等 即可：
引用 切映射 dΦ|x 作用于 X 的局部坐标基向量 {∂i} 的效果 的结论，即：

在该式中，若 Φ : X → Y  是一个截面，则等式右边

∂Φa

∂xi
⋅
∂
∂ya

=
∂Φj

∂xi
⋅
∂
∂xj

+
∂Φμ

∂xi
⋅
∂
∂yμ

= ∂i +
∂Φμ

∂xi
⋅ ∂μ

它的含义是：

（3）该等价关系 ∼1
x 定义的一个等价类称为一个一阶 jet，用等价类中的一个代表截

面标记，记作 j1xs 或 j1x(s)

（4）由一阶等价关系定义的商空间，也就是一阶 jet 构成的集合，记作
J 1xY = {j1x(s)} ，称为“一阶 jet 空间”

II. 一阶 Jet 丛 J 1Y  就是一阶 Jet 空间 J 1xY  的不交并
J 1Y := ⨆x∈X J 1xY

dΦx(∂i) = ∂i[Φa]∂a

第一项 ∂i：表示在 Y  中沿着 xi 的方向前进；

第二项 ∂Φμ

∂xi ⋅ ∂μ：表示前进时会附带地沿着纤维方向“上浮”或“下沉”。
我们发现对任意两个截面，作用在坐标基上时，第一项始终相等， 整整需要比较的是第二
项，也就是截面的一阶导数沿纤维方向的分量



设 π : Y → X 是一个光滑纤维丛。
我们定义一阶 Jet 丛 J 1Y  为：

J 1Y := ⨆

x∈X

J 1xY

其中 J 1xY  是所有在点 x 处局部截面的等价类（即一阶 jets）组成的集合。

这个集合带有两个自然投影：

III. 一阶 Jet 丛 J 1Y  作为仿射丛的丛结构

仿射丛投影：π1,0 : J 1Y → Y , j1x(s) ↦ s(x) ∈ Y

仿射丛纤维：Ey0 := π−11,0(y0) = {j
1
π(y0)

(s) ∣ s(π1,0(y0)) = y0}

在任意一根选定的纤维 Ey0  上，用于定义 jet 的基点 x0 = π(y0) 和截面的值
s(x) = y0 都是选定的，纤维上的自由度只有用于定义 jet 的截面的一阶导数值 dsx0

仿射丛纤维构成仿射空间，即任意纤维都同构于一个向量空间（称为仿射空间的模型

空间）V := Hom(Tπ(y0)X,Vy0Y )

选择映射 f : Ey0 → V , j1x(s) ↦ ds|vertx  作为仿射同构

IV. 一阶 Jet 丛 J 1Y  的局部坐标

（1）J 1Y  上的一个点就是一个一阶 jet j1x(s)

（2）j1x(s) 在 J 1Y  上可以表示为局部坐标 (xi, yμ, yμi) 其中 yμ = sμ(x) , yμi = (dsx)
μ
i

二、前置：k 形式，外积， 流形上的 k 形式场

1. 到总空间的投影：

π1,0 : J 1Y → Y , j1xs↦ s(x)

它记录了 jet 的值。
2. 到底空间的投影：

π1 : J 1Y → X, j1xs↦ x

它记录了 jet 的基点。



I. 对偶空间，1-形式

（1）对偶空间 V ∗

设 V  是一个向量空间，则对偶空间 V ∗ 是由 V  上的所有线性泛函（即从 V  到实数的线性映射）
组成的空间。形式上，

V ∗ = {f : V → R ∣ f 是线性映射}.

如果 V  是 n 维的，则 V ∗ 也是 n 维的。

（2）对偶空间的元素是向量空间上的 1-形式：ω : V → R,ω ∈ Hom(V ,R) = V ∗

设 V  是一维或有限维实向量空间，V ∗ 是其对偶空间，即：

V ∗ := Hom(V ,R)

那么 V ∗ 中的元素称为 V  上的1-形式，即：

1-形式是一个线性函数：

ω : V → R, ω ∈ V ∗

也可称为协变向量（covector）或线性泛函。

（3）对偶空间的自然基 {eb} 是 1-形式，任何 1-形式都可以写成这组基的线性组合

II. 对偶空间的张量积，向量空间上的 k 形式，对偶空间的 k 次外幂空
间（向量空间的 k-形式空间 ）

(V ∗)⊗k ：对偶空间 V ∗ 的 k 次张量积空间

设 V  是一维数为 n 的实向量空间，V ∗ 是其对偶空间。

我们考虑 V ∗ 的 k 次张量积空间：

在 V = Rn 上，任意 1-形式 ω ∈ V ∗ 都可以唯一表示为：

ω = a1 dx1 +⋯+ an dxn

其中 {dxi} 是对偶基，ai ∈ R。
对任意 v = (v1,… , vn) ∈ Rn，该 1-形式的作用为：

ω(v) = a1v
1 +⋯+ anv

n



(V ∗)⊗k := V ∗ ⊗⋯⊗ V ∗

k 次

它由所有 k-线性映射：

ω : V ×⋯× V

k

→ R

组成，要求这些映射使得每个输入方向都线性。这里的元素称为 协变 k 阶张量（covariant k-
tensor）

(V ∗)⊗k 是下文介绍的“向量空间上的 k-形式”生活的空间（实际上它们生活的空间是
该空间的子空间ΛkV ∗，称为对偶空间 V ∗ 上的**第 k 外幂空间）

向量空间上的 k -形式：定义

一个 k-线性映射 ω : V k → R 是一个 k-形式，当且仅当：

ω(vσ(1),… , vσ(k)) = sgn(σ) ⋅ ω(v1,… , vk) ∀σ ∈ Sk

即：对任意置换，符号改变导致符号翻转。

特别地：

定义重述：一个 k-形式就是一个定义在向量空间 V  上的 k 阶完全反对称协变张量，k

-形式生活在“对偶空间 V ∗ 上的第 k 外幂空间，也称为 **k 次外代数空间”，称为 k-
形式空间

k-形式构成的集合： ΛkV ∗ ⊂ (V ∗)⊗k 称为向量空间 V  上的 “k-形式空间”

我们定义 (V ∗)⊗k 的一个子空间，包含所有完全反对称的 k-线性映射，称为 V  上的 k-形式空间，
记作：

ΛkV ∗ ⊂ (V ∗)⊗k

它是 V  的对偶空间 V ∗ 上的第 k 外幂空间，也称为 k 次外代数空间。

ΛkV ∗ ⊂ T kV ∗

小结





如果交换任意两个输入向量，则符号翻转；

如果两个输入向量相等，则 ω = 0；

因此是“斜对称张量”。



III. 外积（Wedge Product）

我们为何需要外积？

举例：在面积的几何表达中，(v1, v2) 与 (v2, v1) 所定义的有向面积相反，普通张量却无法体
现这一点。

也就是说，我们希望构造一种函数：

ω : V × V ×⋯× V → K, 线性于每个参数

其中 ω 接受 k 个向量作为输入，是一个 k 重线性函数。
此外，我们还希望这个函数具有如下性质：

定义：（1-形式的）外积

设 f1,… , fk ∈ V ∗，定义它们的外积为如下函数：

f1 ∧⋯∧ fk(v1,… , vk) :=∑
σ∈Sk

sign(σ) ⋅ f1(vσ(1))⋯ fk(vσ(k))

其中：

该定义下，f1 ∧⋯∧ fk 是一个满足：

k-形式是对偶空间中一种特殊的多线性映射；

它们是 V ∗ 上完全反对称的 k 次张量；
ΛkV ∗ 是从线性代数出发定义的，无需任何流形结构。

我们已经知道，流形上的 1-形式是“作用在切向量上的线性函数”。
如果我们想表达“作用于多个切向量的联合结果”，例如面积、体积或流量，就必须构造高阶形
式。

但普通张量积不能区分这些几何量的“方向感” —— 也就是说，它们没有反对称性。

只要有两个输入相等，则结果为 0；

交换任意两个输入，会改变符号。

这就引出了“外积”的定义，它构造出满足这些反对称性的多线性函数。

Sk 是 k 个元素的置换群；

sign(σ) 是置换的符号；
每一项都是将 fi 作用在不同顺序排列的 vj 上。

多线性性（对每个 vi 变量线性）；



（1）对偶基 {eb} ⊂ V ∗, {eb} ⊂ Λ1V ∗ 的外积

（2）一般 k 形式和 l 形式的外积

更一般地，若 ω ∈ Λk(V ∗)、η ∈ Λl(V ∗)，则

ω ∧ η =
(k+ l)!
k! l!

Alt(ω⊗ η)

其中 Alt 是反对称化算子，它将张量映射到全反对称形式

外积：基本性质

几何直观意义

IV. 流形上的 k 形式场

（1） (T ∗
p M)⊗k ：余切空间 T ∗

p M 的 k 次张量积空间

完全反对称性（交换任意两输入变号，输入中有两个相等则为零

考虑向量空间 V  和其对偶空间 V ∗，对偶基 {eb} 显然是 1-形式，即 {ea} ⊂ Λ1V ∗ ，因此可以
定义两个对偶基的外积：

外积定义为：

ea ∧ eb = ea ⊗ eb − eb ⊗ ea

因此，它们组合成一个 二阶反对称张量，也就是一个 2-形式。

1. 反对称性（graded-commutative）
对于ω ∈ Λk(V ∗)，η ∈ Λl(V ∗)，有

ω ∧ η = (−1)klη ∧ ω

2. 线性
外积对每个因子都是线性的，支持标量乘法和加法。

3. 结合性

(ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3)

外积结合了多个 1-形式（线性泛函），形成一个可以作用于多个切向量的高阶反对称映射；

在二维中，dx1 ∧ dx2表示面积元素，在三维中，dx1 ∧ dx2 ∧ dx3表示体积元素；

外积的反对称性体现了体积的方向性（交换因子会改变符号），适用于导出积分方向关系等。



设 M 是一 n 维光滑流形，p ∈M 为一点。记 T ∗
p M 为 p 点处的余切空间。

对任意正整数 k，我们定义 T ∗
p M 的 k 次张量积空间为：

(T ∗
p M)

⊗k := T ∗
p M ⊗⋯⊗ T ∗

p M

k 次

这是 T ∗
p M 与自身的 k 次张量积空间

其元素称为 p 点处的 协变 k 阶张量（covariant tensors of rank k），它们是如下类型的多重线性
映射：

TpM ×⋯× TpM → R, （共 k 个 TpM）

即它们将 k 个切向量输入，输出一个实数，且关于每个变量线性。

（2） ωp ∈ (T ∗
p M)⊗k ：k-形式首先是 k 阶协变张量

T ∗
p M 中的元素是线性函数（作用在 TpM 上），而其 k 次张量积空间中元素是：

一个 k 线性函数：

ωp : TpM ×⋯× TpM

k 个

→ R

它是关于每个变量线性的，但没有对称性或反对称性要求。

这类张量可以用来构造更一般的张量场、差分形式、对称张量等。

（3）ωp ∈ Λk(T ∗
p M))：并且要求一个 k 形式必须是一个完全反对称的 k 阶协变张量

张量积空间 T ∗
p M

⊗k 中的元素是任意的协变张量，而 k-形式是其中的一个子集：

（4）k-形式场就是在流形的每一点选择一个 k 形式，并要求这种选择随流形上点的
变化是光滑变化的

定义：

一个 k-形式场（k-form field）是一个将流形上的每一点 p ∈M 映射到一个 k-形式 ωp 的规





所有 k 阶完全反对称的协变张量构成（余切空间 T ∗
p M 的）k 次外幂空间（Exterior power）：

ΛkT ∗
p M ⊂ T ∗

p M
⊗k

即：k-形式是满足交错性条件的 k 阶协变张量。



则：

ω : p↦ ωp ∈ ΛkT ∗
p M

并且要求这个映射在流形意义下光滑变化。

其中记号 Λk(T ∗
p M) 表示余切空间 T ∗

p M 的第 k 外幂，也就是定义在流形上点 p ∈M 的切空间上
的 k 形式的集合

（5）k-形式场 ω ∈ Ωk(M) 可以直观地理解为：

在流形 M 的每一个点 p ∈M，我们选择一个定义在切空间 TpM 上的 k-形式

ωp ∈ Λk(T ∗
p M)

并要求这种选择在 p 随流形变化时是 光滑的。

也就是说，k-形式场是将每个点处的 k-形式“拼接”在一起，形成一个全局的、光滑变化的几何对
象。

（6）记流形 M 上 k -形式场的集合为 Ωk(M)

三、拉格朗日密度：动机

I. 系统的动力学定义在 Jet 丛上：拉格朗日量定义在是定义在 J 1Y  上
的函数（即流形 J 1Y  上的标量场）

我们不加证明地指出（稍后说明原因）：在几何语言中，系统的动力学不再是传统意义上定义在

点空间（如 q(t), q̇(t)）的函数，而是定义在构型丛 Y → X 的截面及其导数组成的空间上，即一
阶 Jet 丛 J 1Y。

我们引入以下结构：

构型丛 π : Y → X

X 是底流形，例如经典力学中 X = R 表示时间轴；

Y  是总空间，纤维为构型空间 Q；
一个截面 Φ : X → Y  给出系统在 X 上的演化轨迹。

一阶 Jet 丛 J 1Y
每个点为某截面 Φ 在某点 x ∈ X 的一阶 jet，记作 j1x(Φ)；
局部坐标表示为 (xi, ya, yai)，其中：

ya = Φa(x) 表示截面在该点的值，



拉格朗日量是定义在 Jet 丛上的函数：

L : J 1Y → R, L(xi, ya, yai)

它对每一个截面及其导数赋值，用于后续构造作用泛函。

II. 函数不能直接在流形上积分：从拉格朗日量（函数）到拉格朗日密
度

问题：函数 L 与体积形式 dx1 ∧⋯∧ dxn 的组合并非天然几何对象

虽然 L 是 Jet 丛上的一个良好函数，但我们若试图直接在 X 上积分构造作用泛函：

S[Φ] = ∫
X

L(xi, ya(x), yai(x)) ⋅ dx
1 ∧⋯∧ dxn,

这面临一个关键问题：

函数 L 与体积形式 dx1 ∧⋯∧ dxn 的组合并非天然几何对象

原因在于：

解决方案：将拉格朗日量提升为拉格朗日密度（n-形式场，注意 n 是底空间维度而非
总空间维度）

为克服上述问题，我们引入几何上天然良定义的对象 —— 拉格朗日密度 L：

定义： 拉格朗日密度是定义在 Jet 丛 J 1Y  上的一个 n-形式场，属于：

L ∈ Ωn(J 1Y )

它在每一点 j1x(Φ) ∈ J 1Y  上赋予一个 n-形式，能够自然拉回到 X 上进行积分。

现在我们可以以几何的方式重新构造作用泛函：

yai = (dΦx)ai 表示 Φa 对 xi 的偏导。

L 只是一个数值函数，对坐标变换没有良好协变性；

dx1 ∧⋯∧ dxn 是一个 n-形式，但二者组合缺乏几何意义；
因此整个表达式在坐标变换下会改变，积分值也不具有几何不变量性质。

这违反了物理要求：作用量应具有坐标无关性（特别是在时空协变理论中）。换言之，L 本身
不够几何，不可直接用于积分。

1. 给定一个场 Φ : X → Y，其一阶 Jet 延拓是 j1Φ : X → J 1Y；



拉格朗日密度 L ∈ Ωn(J 1Y ) 的优点

四、拉格朗日密度：定义
在经典场论与几何变分理论中，拉格朗日密度（Lagrangian density）是定义动力学与作用量泛
函的基本几何对象。它并非仅仅是一个函数，而是一个定义在 Jet 丛上的 n-形式场，其结构确保
了作用量在流形上积分的协变性和几何不变性。

I. 几何背景：Jet 丛与拉格朗日结构的自然位置

设：

Jet 丛 J 1Y  是定义变分系统与拉格朗日结构的自然空间

II. 拉格朗日密度的定义（作为 n-形式场）

我们定义：

拉格朗日密度 是 J 1Y  上的一个 n-形式场（n = dimX）：

L ∈ Ωn(J 1Y )

即：L 是 J 1Y  上余切丛 T ∗J 1Y  的 n 次外幂丛上的一个光滑截面。

2. 拉格朗日密度 L 是 J 1Y  上的一个 n-形式场；

3. 我们将 L 沿 j1Φ 拉回到 X 上，得到一个可积分的 n-形式场：

(j1Φ)∗L ∈ Ωn(X)

4. 最终作用泛函定义为：

S[Φ] := ∫
X

(j1Φ)∗L

L 是 J 1Y  上的几何对象，不依赖坐标系统；
拉回后的 (j1Φ)∗L 是 X 上的 n-形式场，可自然积分；
表达式在任意坐标变换下协变，积分值为几何不变量；

为变分与运动方程的导出提供了结构基础（如 Euler-Lagrange 方程的几何表达）。

X 是 n 维光滑流形，称为 底空间（Base space），例如时空；

π : Y → X 是一个光滑纤维丛，称为 构型丛（Configuration bundle）；
J 1Y  是 Y  的一阶 Jet 丛，其点 j1x(Φ) 描述截面 Φ : X → Y  在点 x 处的 1 阶导数信息。



III. 水平 n-形式的约束（可积性要求）

注意，Jet 丛 J 1Y  的维度大于 X，所以 n-形式可以有很多种构造方式。

但我们要求：

拉格朗日密度 L 是一个 “水平 n-形式” 场，即它在每一点 j1x(Φ) ∈ J 1Y  上，完全由底空间 X
的方向诱导的余切空间张成：

L(j1x(Φ)) ∈ Λ
n(Hor∗j1x(Φ)J

1Y ) ≅ΛnT ∗
xX

这里 Hor∗j1x(Φ)J
1Y  表示与底空间 X 平行方向相关的余切空间。

IV. 局部表达（坐标形式）

设 xi 是 X 的局部坐标，yμ 是 Y  上纤维方向的局部坐标，y
μ
i 是一阶 Jet 坐标。

则 L ∈ Ωn(J 1Y ) 的局部表达形如：

L = L(xi, yμ, yμi) dx
1 ∧⋯∧ dxn

其中：

疑问：如何用坐标 1-形式构造一个 n-形式场？

设：

(1)确定坐标诱导的 n-形式基

由坐标 1-形式外积可得：

dxi1 ∧⋯∧ dxin , 其中 1 ≤ i1 <⋯ < in ≤ m

这组形式在每个局部开集 U ⊂M 上构成 ΛnT ∗M 的局部基。

L : J 1Y → R 是光滑函数，称为拉格朗日函数；

dx1 ∧⋯∧ dxn 是底空间方向的体积 n-形式；
整体表达式是 Jet 丛 J 1Y  上一个 n-形式（在坐标变换下具有良好协变性）。

M 是一个 m 维光滑流形；

(U ,ϕ) 是 M 上的一个局部坐标图，坐标函数为 x1,… ,xm；

诱导出的坐标 1-形式为 dx1,… , dxm ∈ Ω1(U)；

我们希望构造一个定义在 ( M ) 上的 n-形式场（n ≤ m）：

ω ∈ Ωn(M)



（2）引入光滑函数系数

任取一组光滑函数 fi1⋯in ∈ C∞(U)，定义：

ω := ∑

1≤i1<⋯<in≤m

fi1⋯in(x) ⋅ dx
i1 ∧⋯∧ dxin

即：将坐标诱导的 n-形式基与光滑函数作为系数线性组合，得到一个局部定义的 n-形式场。

（4）说明其为 n-形式场

此构造满足：

V. 拉格朗日密度的拉回（在截面上）

给定一个截面 Φ : X → Y，我们可定义其一阶 Jet 延拓：

j1Φ : X → J 1Y , x↦ j1x(Φ)

通过拉回操作，得到一个定义在 X 上的 n-形式场：

(j1Φ)∗L ∈ Ωn(X)

这是真正可以在 X 上进行积分的对象：

S[Φ] := ∫
X

(j1Φ)∗L

这才是定义作用泛函（Action Functional）的几何正确表达。

五、总结

问题 解决方案

函数 L 无法几何自然积分 提升为 L : J 1Y → Λn(T ∗(J 1Y ))

坐标变换下不具协变性 n-形式具有良好坐标变换行为

对每个 x ∈ U，ωx ∈ Λn(T ∗
xM；

ω 对坐标变化有良好变换性（因坐标形式与函数系数皆适当变换）；
故 ω ∈ Ωn(U) ⊂ Ωn(M) 是一个 n-形式场。



问题 解决方案

S[Φ] 在几何上不良定义 使用 L 保证几何良定义与物理协变性


