
D01X. k形式场的拉回
jet 丛 J 1Y  作为光滑流形，拉格朗日密度是定义在其上的 n-形式场（n = dimX），我们希望通过

X → J 1Y  的（由截面 Φ 自然诱导的）映射 j1Φ 将其拉回到流形 X 上；但这涉及一些虽然简单但
需要系统整理的背景知识，这些内容的系统性导出比较浪费篇幅（所以D02写得有点长），如果不
追求逻辑上的环环相扣，相关概念可以以一种松散的递进顺序列出，本节基于这种想法编排相关

内容。

一、前置：（光滑流形上）函数（即标量场）的拉回

I. 背景设置

设 M 与 N  为两个光滑流形，Φ :M → N  为一个光滑映射（smooth map）。我们记 C∞(N) 表示
N  上的实值光滑函数的集合，即

C∞(N) := {f : N → R ∣ f 是光滑函数}

（1）M,N  分别为 m,n 维的光滑流形

（2）Φ :M → N  是流形间的光滑映射

（3）f ∈ C∞(N) 是 N  上的光滑函数（取值于 R 的光滑映射）

II. 光滑流形 N  上函数 f 关于 Φ :M → N  的拉回 Φ∗f

Φ∗f := f ∘ Φ ：定义

给定 f ∈ C∞(N)，定义其沿 Φ 的拉回（pullback）为函数

Φ∗f := f ∘ Φ :M → R

换言之，对任意 p ∈M，有

(Φ∗f)(p) = f(Φ(p))

（1）Φ 先将流形 M 上的一点 p ∈M 推送到 N  上的一点 Φ(p) ∈ N

（2）N  上的函数 f 再将 Φ(p) 映到 R 上一点

（3）得到复合函数 f ∘ Φ :M → R

III. 函数空间的拉回算符 Φ∗



记号 Φ∗ : C∞(N) → C∞(M) 是一个映射，称为函数空间的拉回算符（pullback operator）。该
算符满足以下代数性质：

IV. 总结

给出 N  上的标量场 f ，以及光滑流形间的映射 Φ :M → N

我们可以通过 Φ :M → N  将 N  上的标量场 f 拉回 到 M 上的标量场 Φ∗f

之所以称为“拉回”，是相对拉回的媒介 Φ 的方向而言的

二、前置：光滑流形上的 k 形式场
I. 余切空间 T ∗

pN  与 k 次外代数

（1）流形 N  上点 p ∈ N  处的余切空间 T ∗
pN

严格的数学定义：

流形 N  上点 p ∈ N  处的余切空间 T ∗
pN  是 p 点处切空间 TpN  的对偶空间，即

T ∗
pN := Hom(TpN ,R),

它由所有从 TpN  到实数域 R 的线性函数 （也就是向量空间 TpN  和实数域 R 的同态）构
成。

（2）余切空间 T ∗
pN  的第 k 次外幂（外积）空间 Λk(T ∗

pN)

严格数学定义

Λk(T ∗
pN) 是 T ∗

pN  的第 k 次外幂空间，亦即点 p 处所有从 (TpN)k 到 R 的完全反对称的 k-线
性函数所构成的向量空间：

Λk(T ∗
pN) := {ω : (TpN)k → R ∣ ω 多重线性且完全反对称}

另外

记号说明：该记号 Λk 源自外代数（exterior algebra） 中的外幂构造，符号 Λk 表示对偶空
间 T ∗

pN  的 k 次外积空间，其元素也称为 k-形式。外积符号 ∧ 定义了 Λ∙(T ∗
pN) 中的代数结

构。

（3）Λk(T ∗
pN) 上的一个元素 ωp 称为流形的点 p ∈ N  上的一个 k-形式

线性性：Φ∗(af + bg) = aΦ∗f + bΦ∗g，其中 a, b ∈ R，f, g ∈ C∞(N)；

乘法保持：Φ∗(fg) = Φ∗f ⋅ Φ∗g；

单位函数保持：Φ∗(1) = 1，其中 1 表示常值函数 x↦ 1。



II. 流形上的 k-形式丛（Exterior Bundle）Λk(T ∗N)

将流形上每一点的（余切空间 T ∗
pN  的 k 次外幂空间） Λk(T ∗

pN) 组织起来，可得一个光滑向量
丛：

Λk(T ∗N) := ⨆
p∈N

Λk(T ∗
pN)

称为 N  上的 k-形式丛，或称为 k 次外幂余切丛。这是一个以 N  为底空间的光滑向量丛

Λk(T ∗N) 称为流形 N  上的 k-形式丛，或称流形 N  的 k 次外幂余切丛

III. 流形 N  上的 k 形式场 ω : N → Λk(T ∗N)

一个 k-形式场是k-形式丛上的一个光滑截面，即：

ω ∈ Γ∞(Λk(T ∗N)) =: Ωk(N)

其中 Γ∞ 表示光滑截面空间。换句话说，ω 是一个映射

ω : N → Λk(T ∗N), p↦ ωp ∈ Λk(T ∗
pN)

使得 ω 相对于 N  的光滑结构是光滑的

（1）流形 N  的 k 次外幂余切丛 Λk(T ∗N) 上光滑截面的集合记作： Γ∞(Λk(T ∗N))

（2）流形 N  上的一个 k-形式场 ω 就是 Γ∞(Λk(T ∗N)) 中的一个截面

（3）记流形 N  上的 k-形式场构成的集合为 Ωk(N) := Γ∞(Λk(T ∗N))

（4）一个 k-形式场 ω 就是一个截面 N → Λk(T ∗N)，也就是说

ω : p↦ ωp ∈ Λk(T ∗
pN)

三、k-形式场的拉回
I. 背景设定

（1）M,N  分别为 m,n 维的光滑流形

（2）Φ :M → N  是流形间的光滑映射

（3）ω : N → Λk(T ∗N) 是流形 N  上的 k 形式场

II. k-形式的拉回

(Φ∗ω)p = ωΦ(p) ∘ TpΦ∧k：定义



令 p ∈M，v1,… , vk ∈ TpM，则定义：

(Φ∗ω)p(v1,… , vk) := ωf(p) ((TpΦ)(v1),… , (TpΦ)(vk))

即：

k-形式的拉回可以近似写成函数链 TpM TΦ(p)N R

II. k- 形式场的拉回

（0）由（底）流形间的映射 Φ :M → N  诱导切丛间的切映射 dΦ : TM → TN

（1）dΦp 先将切空间 TpM 上的一点 v ∈ TpM 推送到 TΦ(p)N  上的一点
dΦp(v) ∈ TΦ(p)N

（2）TΦ(p)N  上的 k-形式 ωΦ(p) 再将 ((dΦ)p(v1),… , (dΦ)p(vk)) 映到 R 上一点

四、拓展阅读
更加严格的语境下，我们采取的定义顺序是按照以下逻辑：

先通过局部切映射 TpΦ 把 TpM 上切向量 vi 推送到 Tϕ(p)N；
然后用 ωΦ(p) 作用这些切向量，得到实数；

所以 (Φ∗ω)p 确实是 M 上的 k-形式

(dΦ)p
−→

ωΦ(p)
−→

使用“光滑丛间光滑映射诱导切映射”的思路定义了流形间光滑映射 Φ :M → N  在流形的切丛
上诱导的切映射 TΦ : TM → TN，定义性质要求切映射满足局部表达式 TpΦ(v)[f] = v[f ∘ Φ]

然后定义流形上任意 切向量 v 的推前 Φ∗ : TpM → TΦ(p)N  ；要求满足 Φ∗v[f] = v[f ∘ Φ]

但是 v[f ∘ Φ] =: TpΦ(v)[f]
因此 Φ∗v = TpΦ(v), v ∈ TpM；换言之 切向量的推前 和 （局部）切映射作用于切向量
本质上是同一回事

如果（合理地）将切向量和推前后的切向量都视为（流形上光滑函数的）泛函，则

推前后的切向量作为泛函 可以写作复合函数形式 Φ∗v := v ∘ Φ∗， 其中 Φ∗ 是定义
在 C∞(N) 上的拉回映射

如果（非正式地）将切向量和推前后的切向量都视为（流形上1-形式的）泛函，则
推前后的切向量作为泛函 可以写作复合函数形式 Φ∗v := v ∘ T ∗

Φ(p)Φ = v ∘ Φ∗ ；其
中Φ∗ 和局部余切映射 T ∗

Φ(p)Φ 都是1-形式的拉回，即定义在 T ∗
Φ(p)N  上的拉回映射

再切向量的推前的基础上定义 向量场的推前 Φ∗V：要求满足局部表达式

(Φ∗V )Φ(p)[f] = Vp[f ∘ Φ]

但是 Vp[f ∘ Φ] =: TpΦ(Vp)[f]

因此 (Φ∗V )Φ(p) = TpΦ(Vp)；换言之 切向量场的推前 和 （局部）切映射作用于向量
场在局部的场值 本质上是同一回事



在此整理复合函数形式的几个公式：

推前后的切向量：  , ,

推前后的切向量场：  ;

拉回后的1-形式：  ,

拉回后的1-形式场：  .

以及切向量的推前/1-形式的拉回的局部定义表达式：

, ;

, .

并且，向量场的推前映射 Φ∗ : X(M) → X(N) 是截面空间间的映射（因为向量场可
以视为切丛的截面）Φ∗ : Γ(TM) → Γ(TN)，其对具体向量场作用效果可以写作复

合函数形式：Φ∗V = TΦ ∘ V ∘ Φ−1

然后利用 切映射 定义 余切映射 T ∗Φ : T ∗N → T ∗M 为其对偶结构，即要求满足 局部表达式
T ∗
Φ(p)Φ(α)[v] = α[TpΦ(v)]

同理，利用 切向量的推前 定义 余切向量的拉回 Φ∗ : T ∗
Φ(p)N → T ∗

pM 为其对偶结构，即要求
满足 Φ∗α[v] = α[Φ∗v]

但是 α[Φ∗v] = α[TpΦ(v)] = T ∗
Φ(p)Φ(α)[v]

因此 Φ∗α[v] = T ∗
Φ(p)Φ(α)[v]；换言之 1-形式的拉回 和 （局部）余切映射作用于1-形式

本质上是同一回事

如果（合理地）将1-形式和拉回后的1-形式都视为（流形上切向量的）泛函，则 拉
回后的1-形式作为泛函 可以写作复合函数形式 Φ∗α = α ∘ TpΦ = α ∘ Φ∗ ，其中 Φ∗

和局部切映射 TpΦ 都是切向量的推前，即定义在 TpM 上的推前映射

再在 1-形式 的拉回的基础上定义 1-形式场的拉回 Φ∗ω ：要求满足局部表达式
(Φ∗ω)p[v] = ωp[Φ∗v]

但是 ωp[Φ∗v] = ωp[TpΦ(v)] = T ∗
Φ(p)Φ(ωp)[v]

因此 (Φ∗ω)p = T ∗
Φ(p)Φ(ωp)；换言之 1-形式场的拉回 和 （局部）余切映射作用于1-

形式场的局部场值 本质上是同一回事
并且，1-形式场的拉回映射 Φ∗ : Ω1(N) → Ω1(M) 也是截面空间间的映射（1-形式
场可以视为余切丛的截面）Φ∗ : Γ(T ∗N → T ∗M)，其对具体1-形式场的作用效果可
以写成复合函数形式：Φ∗ω = T ∗Φ ∘ ω ∘ Φ

Φ∗v := v ∘ Φ∗ Φ∗v := v ∘ T ∗
Φ(p)Φ = v ∘ Φ∗

Φ∗V = TΦ ∘ V ∘ Φ−1

Φ∗α = α ∘ TpΦ = α ∘ Φ∗

Φ∗ω = T ∗Φ ∘ ω ∘ Φ

(Φ∗V )Φ(p)[f] = Vp[f ∘ Φ] (Φ∗V )Φ(p) = TpΦ(Vp)

(Φ∗ω)p[v] = ωp[Φ∗v] (Φ∗ω)p = T ∗
Φ(p)Φ(ωp)


