
D02. 拉格朗日密度的拉回

一、拉格朗日密度：回顾
设：

我们定义拉格朗日密度为：

L : J 1Y → Λn(Hor∗J 1Y )

其中 Hor∗J 1Y  表示 J 1Y  上的水平余切丛，其每一点处的纤维与 T ∗
xX 同构。

因此，对于每一点 j1x(Φ) ∈ J 1Y，我们有：

L(j1x(Φ)) ∈ Λn(Hor∗j1x(Φ)J
1Y ) ≅ΛnT ∗

xX

I. 拉格朗日密度是一个“水平 n-形式”场

拉格朗日密度 L 是一个 “水平 n-形式” 场，即它在每一点 j1x(Φ) ∈ J 1Y  上，完全由底空间 X 的
方向诱导的余切空间张成：

L(j1x(Φ)) ∈ Λn(Hor∗j1x(Φ)J
1Y ) ≅ΛnT ∗

xX

这里 Hor∗j1x(Φ)J
1Y  表示与底空间 X 平行方向相关的余切空间。

J 1Y  上的水平 n-形式场：定义

在一阶 Jet 丛 J 1Y  上，我们可以定义各种形式场（differential form fields）。
其中，水平 n-形式场（horizontal n-form field） 是一类特别重要的对象，它只沿底空间 X 的
方向取值，与纤维方向“正交”。

设 X 是维数为 n 的光滑流形，Y → X 是一个纤维丛，J 1Y  为其一阶 Jet 丛。
我们称 L ∈ Ωn(J 1Y ) 是一个水平 n-形式场，当且仅当在任一点 j1x(s) ∈ J 1Y  处，它的值只作用在
水平方向，即：

L(j1x(s)) ∈ Λn(Hor∗j1x(s)J
1Y )

X 是维数为 n 的光滑定向流形（作为底空间）；

π : Y → X 是维数为 n+m 的纤维丛，总空间 Y  表示构型空间；
J 1Y  是 Y  的一阶 Jet 丛，局部坐标记为 (xi, yμ, yμi)；

截面 Φ : X → Y  的一阶 Jet 延拓为 j1Φ : X → J 1Y，点 x ∈ X 映到 j1x(Φ) ∈ J 1Y。



其中 Hor∗j1x(s)J
1Y  是 J 1Y  上与底空间 X 相切方向的余切空间（坐标上表现为 dxi 张量积张成的

子空间）

什么叫做“水平 n 形式场在任意点的取值只作用于水平方向”？

换言之，L(j1x(s)) 的“作用对象”被限制在 Tj1x(s)(J
1Y ) 的一个子空间上，即“水平切空间”

Horj1x(s)J
1Y。这意味着 L(j1x(s)) 实际上属于外幂空间：

L(j1x(s)) ∈ Λn
(Hor∗j1x(s)J

1Y ) ⊂ Λn
(T ∗

j1x(s)
J 1Y )

这样的 n-形式称为 水平 n-形式。其组成部分仅由 dxi 张量积生成，不含 dyμ 或 dyμi 成分。

拉格朗日密度在 J 1Y  上每点的取值为一个“水平n-形式”，意味着该 n 形式可以由水
平方向的坐标 1 形式外积生成

J 1Y  上的水平 n-形式场：局部坐标表示

在局部坐标系下，设 J 1Y  的坐标为 (xi, yμ, yμi)，则水平 n-形式场形如：

首先，所谓“在任意点的取值”
是指该场在空间某点的取值

在这里指 L 在 J 1Y  上的某点 j1x(s) = (xi, yμ, yμi)上的取值

n 形式场在某点的取值自然是一个“n-形式”
而一个（Tj1x(s)(J

1Y ) 上的） n 形式就是一个 n 阶完全反对称协变张量，取值于（
Tj1x(s)(J

1Y ) 的）n 形式空间 Λn(T ∗
j1x(s)

(J 1Y ))

在此基础上，所谓“取值只作用于水平方向”
就是说当我们在 L(j1x(s)) 的取值空间 Λn(T ∗

j1x(s)
(J 1Y )) 选取一个值，也就是一个 n-形式

时

我们只选择这样的 n-形式，当它作用于 Tj1x(s)(J
1Y ) 上的切向量的张量积时，它：

仅当所有输入向量均为“水平向量”时才可能取非零值；

一旦任一输入向量沿纤维方向（即“垂直方向”），则结果为 0。
那么什么是 Tj1x(s)(J

1Y ) 上切向量的方向，有哪几种方向呢？
只需考察 J 1Y  在该点的局部坐标 (xi, yμ, yμi)

我们知道流形上的局部坐标可以诱导该点切空间上的一组基，因为 J 2Y  上的局部
坐标就诱导了 Tj1x(s)(J

1Y ) 上的一组基，这组基就赋予了该切空间上“方向”的概念
水平方向（base direction）就是由 xi 诱导的切向量基方向

纤维方向（vertical directions from Y → X）就是由 yμ 诱导的切向量基方向
Jet 方向（derivative directions, from yμ,i）就是由 yμi 诱导的切向量基方向



L = L(xi, yμ, yμi) dx
1 ∧⋯∧ dxn

其中：

为什么拉格朗日场必须是水平 n-形式场？

换言之：拉格朗日密度必须是水平 n-形式场，才能构成有几何意义的作用泛函。

二、拉格朗日密度的拉回 Φ∗L

I. 流形上的 k-形式场 ω 关于流形间光滑映射 f 的拉回 f ∗ω = ω ∘ f

回顾：光滑流形 N  上的 k 形式场将流形映射到它的 k-形式丛（或称 k 阶外幂丛
（Exterior Power Bundle of the Cotangent Bundle））

光滑流形 N  上的一个 k-形式场是这样一个映射

ω ∈ Ωk(N) : N → Λk(T ∗N)

其中 Λk(T ∗N) 称为 N  的 k 形式丛，它的每一个元素是 Λk(T ∗
p N) 中的一个点

k-形式场的拉回：借助切映射 df

但这还不是 M 上的 k-形式，因为：M 上的 k-形式应满足：
在每个点 p ∈M，给出一个 k-线性函数：

L 是 Jet 丛上的一个光滑函数；

仅包含 dxi 项，不含 dyμ 或 dyμi 成分；
故属于 Λn(Hor∗J 1Y )，是纯水平的 n-形式。

（Jet 丛上）水平 n-形式字段的核心特点是：它在 Jet 丛 J 1Y  上，但其“取值方向”完全来自
底空间 X。

只有这种结构的 n-形式场，才能通过截面 j1Φ 拉回到 X 上，变成一个 X 上的可以积分的 n-
形式场，从而用于定义作用量。

f :M → N  是光滑映射；
ω ∈ Ωk(N) 是 N  上的 k-形式场，即：

ω : N → Λk(T ∗N)

那么组合映射：

M → N → Λk(T ∗N)

给出 M 上每点 p ∈M 映到 N  上点 f(p) 处的 k-形式。

f ω



(f ∗ω)p : TpM ×⋯× TpM → R

我们真正定义 f ∗ω 为 M 上的 k-形式如下：

令 p ∈M，v1,… , vk ∈ TpM，则定义：

(f ∗ω)p(v1,… , vk) := ωf(p) ((df)p(v1),… , (df)p(vk))

即：

（1）k-形式的拉回不是简单的复合函数

（2）但 k-形式的拉回可以写成函数链 TpM Tf(p)N R

f ∗ω 对 TpM 上的一组有序切向量的作用效果可以直观地表示为

TpM Tf(p)N R

（3）如果非要写成复合函数形式：f ∗ω = ω ∘ df ∧k

写法 意义说明

ω ∘ f 映射到 N  上某点的 k-形式，但不在正确的丛上，无法直接定义为 M 上的 k-
形式

f ∗ω 真正定义在 M 上的 k-形式，通过 TpM
k → R

f ∗ω = ω ∘ df ∧k 可接受的复合表达，表示先推向 N  再作用于 k-形式

II. 拉格朗日密度语境下的情形

仿照上文，我们有：(j1Φ)∗L = L ∘ d(j1Φ)∧n

在我们的语境中：

先通过切映射 df 把 TM 上切向量 vi 推送到 N  上 Tf(p)N；

然后用 ω 作用这些切向量，得到实数；
所以 f ∗ω 确实是 M 上的 k-形式场，记作：

f ∗ω ∈ Ωk(M)

(df)p
−→

ωf(p)
−→

(df)p
−→

ωf(p)
−→

L 是 Jet 丛 J 1Y  上的 n-形式场；
j1Φ : X → J 1Y  是一个从 X 到 Jet 丛的光滑映射；



TxX Tj1xΦJ
1Y R

（1）截面的 jet 延拓 j1Φ : X → J 1Y  作为光滑流形间的光滑映射

（2）j1Φ 通过它的切映射 d(j1Φ) 将流形 X 上的切向量推送为 J 1Y  上的切
向量

我们设：

考虑微分映射：

(dj1Φ)x : TxX → Tj1x(Φ)J
1Y

它将底空间 X 上某点 x 的切向量 v ∈ TxX，推送为 J 1Y  上某点 j1x(Φ) 的切向量。
这个映射的几何意义：将底空间 X 上的微小变化，通过截面 Φ 的一阶行为，提升为 Jet 丛 J 1Y

上的变化。

要确定切映射对切向量的作用效果，只需确定 d(j1Φ)x 对 ∂
∂xi  的作用效果

首先，我们知道任意映射 f 的切映射dfx 对切向量基的作用效果为

当前语境下：

故可定义其拉回：

(j1Φ)∗L ∈ Ωn(X)

这是定义在 X 上的 n-形式场，可自然地用于积分构造作用量

(d(j1Φ))x
−→

LΦ(x)
−→

X 是 n 维底空间（独立变量空间），有局部坐标 xi，

Y → X 是一个纤维丛，总维度为 m+ n，局部坐标 (xi, yμ)，

Φ : X → Y  是 Y  的一个截面，即在局部表达为：

Φ(x) = (xi, Φμ(x))

j1Φ : X → J 1Y  是 Φ 的一阶 jet 延拓，映射每个点 x ∈ X 到：

j1x(Φ) := (xi, Φμ(x), ∂iΦμ(x))

是 J 1Y  上一点的局部坐标表示。

dfx(∂i) = ∂i[f a]∂a

dfx 被替换为 d(j1xΦ)x
∂i 就是 TxX 的坐标基
f a 被替换为 d(j1xΦ)a，并且可以被分解为三部分：f a = (xj, Φμ, Φμ

k
)



换言之

(dj1Φ)x(v) = vi
∂
∂xi

j1x(Φ)
+
∂Φμ

∂xi

∂
∂yμ j1x(Φ)

+
∂ 2Φμ

∂xi∂xj

∂
∂yμj j1x(Φ)

这说明，TxX 上的任意切向量被切映射 d(j1xΦ) 映射到 Tj1xΦJ
1Y  中的这样一个分量

（3）LΦ(x) 再将由 d(j1Φ) 推送的切向量映射到可积分的 n-形式

对应的，∂a 作为 Tj1xΦJ
1Y  上的坐标基也可以分解为三部分

因此对于任意 ∂i 被推送到 Tj1xΦJ
1Y  的结果，我们也可以分三部分处理：

∂i(xj) ⋅ ∂j = ∂i

∂i(Φμ) ⋅ ∂μ

∂i(∂k(Φμ)) ⋅ ∂
∂yμj

⎛

⎝

∣ ∣ ∣

⎞

⎠

xi 分量：继承自 X；

yμ 分量：由 Φμ(x) 对 xi 的导数给出；
y
μ
i  分量：由 ∂iΦμ(x) 对 xj 的导数（即二阶导）给出。


