
E02. Lie 导数
本节引入向量场沿 流 产生的导数：Lie 导数 £。它在几何变分中刻画“形式沿着变分方向的变
化”，是 Cartan 公式与拉回变分公式的关键结构。

一、直观理解：Lie 导数衡量“沿向量场的变化”
Lie 导数是微分几何中描述“对象如何被一个 流 拖动”而发生变化的几何结构。它可以作用在
函数、向量场、微分形式场等各种对象上，提供它们在 V  的场值方向上的变化率场。

在此我们将讨论限制在微分形式场的Lie导数

I. 向量场产生流：从向量到微分同胚族

直观理解：拖动物体的“动态背景”

设 M 是光滑流形，V ∈ X(M) 是一个光滑向量场。
直观地看，V  为每个点 p ∈M 指定了一个“运动方向”。

我们可以将 V  理解为一种“流体速度场”：

这些 ϕt 构成一个“几何上的动态系统”：每个点在 t 时刻被 ϕt 拖动到新位置。

向量场 V  产生的流的定义：从向量到微分同胚族

设 M 是光滑流形，V ∈ X(M) 是一个光滑向量场。我们希望刻画 V  所诱导的“流动结构”。

每个粒子 p ∈M 会随着时间 t 沿着 V  的方向移动；
移动后的位置由映射 ϕt(p) 给出，其中 ϕt :M →M 是 V  生成的局部流。

给定任意初始点 p ∈M，存在穿过 p 的一维积分曲线 γp : Ip →M，满足：

γp(0) = p, γ̇p(t) = V (γp(t))

即 γp 是向量场 V  的积分曲线，沿着 V  的方向“流动”。
若 V  是完备的，则这些积分曲线可拼接成一个一参数微分同胚族：

ϕt :M →M, 满足： ϕ0 = idM ,
d

dt
ϕt(p) t=0 = V (p)

此族 {ϕt}t∈R 称为 V  所生成的流。
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II. 流动下的几何对象（张量场）变化：用拉回形式描述

我们接下来考虑：一个张量场在流动背景下如何“相对于初始点”变化。

设 ω ∈ Ωk(M) 是一个固定的 k-形式场。我们不令 ω 随着 t 变化，而是固定 ω，考察“参考系”随
ϕt 演化下所见的 ω。

几何对象（在此我们进讨论微分形式场）关于微分同胚 ϕ :M →M 的拉回

当 ϕ :M →M 是一个微分同胚（如由某个向量场 V  生成的流 ϕt），我们可以自然地将张量场、

特别是微分形式场沿着 ϕ 拉回。
具体来说：

我们有结论：

微分形式场的拉回 ϕ∗ω := ω ∘ (Tϕ)∧k

补充：一般几何对象（张量场）关于流形微分同胚的拉回（简要介绍）

类型 T  的类型 拉回规则

向量场 T ∈ Γ(TM) ϕ∗T := dϕ−1 ∘ T ∘ ϕ（不常见）

1-形式 T ∈ Γ(T ∗M) ϕ∗αp(v) := αϕ(p)(dϕp(v))

(0, k)-张量（如微分形
式）

T ∈ Ωk(M) 拉回由 (Tϕ)∧k 诱导，简化为形式
拉回

(r, 0)-张量（全反变） 使用 dϕ−1p  在每个分量上作用

对每个固定的 t，ϕt 是 M 上的一个微分同胚（若 V  是完备，则为全局微分同胚）；对每个 p
，t↦ ϕt(p) 是 V  的积分曲线。

每个 ϕt 给出了 M 上的一个微分同胚，因此诱导出一个 k-形式之间的拉回算子：

ϕ∗t : Ω
k(M) → Ωk(M)

表示“将形式 ω 从 ϕt(p) 拉回到 p”。
所得 ϕ∗tω 是 M 上的一族 k-形式场，随着参数 t 的变化而变化，但每一项都是定义在 M 上
的。

对任意 k-形式场 ω ∈ Ωk(M)，其在点 p ∈M 的取值为 ωϕ(p) ∈ ΛkT ∗
ϕ(p)M；

而 ϕ 在切空间上的导数 Tpϕ : TpM → Tϕ(p)M 诱导出协变的线性映射：

(Tpϕ)∧k : ΛkT ∗
ϕ(p)M → ΛkT ∗

p M

即：将 k 个向量 v1,… , vk ∈ TpM 推前为 Tpϕ(v1),… ,Tpϕ(vk) 后，再用 ωϕ(p) 作用。



类型 T  的类型 拉回规则

(r, s)-张量 混合使用 ϕ∗ 与 dϕ，如上主公
式所示

我们简单概括流形 M 上的几何对象关于微分（自）同胚 ϕ :M →M 的拉回的几何意义和结构性
质

III. Lie 导数：几何对象（场）沿（向量场诱导的）流拉回后的变化率

正式地，我们定义 k 形式场沿向量场 V  的Lie导数为：

即：Lie 导数是微分形式沿流拉回后的变化率。

二、 k 形式场的 Lie 导数： Cartan 表达式
£Vω = ιV dω+ dιVω
在上一节中我们看到，Lie 导数的定义依赖于沿流 ϕt 的拉回导数：

1. 几何意义：
拉回操作 ϕ∗T  描述的是：将 ϕ(M) 上的张量 T  “重定位”到 M 上，使得其几何结构在 ϕ 下
保持不变；

如果 T  描述的是某种物理量（如应力、场强等），则 ϕ∗T  表示“固定参考系观察流动场”的
等效表达。

2. 结构性质：
ϕ∗ 保持张量类型不变；
ϕ∗ 是张量代数上的同态，即：

ϕ∗(T ⊗ S) = ϕ∗T ⊗ ϕ∗S

若 ϕ 是微分同胚，则 ϕ∗ 是张量场空间的自同构；
对微分形式 ω，拉回满足：

ϕ∗(dω) = d(ϕ∗ω)

这是微分结构自然性的表现。

£Vω :=
d

dt
ϕ∗tω

t=0

∣



£Vω :=
d

dt
ϕ∗tω

t=0

但这需要显式构造流 ϕt，在理论上不够普适。

我们现在给出 Lie 导数更具结构意义的定义——Cartan 表达式，它仅依赖于：

I. Lie 导数的 Cartan 表达式定义

对任意微分形式场 ω ∈ Ωk(M)，定义：

此定义称为 Cartan 恒等式，它直接定义了 V  对形式 ω 的 Lie 导数，而不依赖于流

II. Cartan 表达式中各项的几何含义

项目 几何含义

ιV 内积算子：把 V  插入形式中第一个变量中，降低次数 k→ k− 1

dω 形式的外微分，提升次数 k→ k+ 1

ιV dω 表示“V  对 ω 的微分行为的投影”

dιVω 表示“插入 V  后再对结果的变化率”

£Vω 综合这两项，描述“V  拖动 ω 时 ω 的瞬时变化率”

III. 与流拉回定义的一致性

当 V  是完备向量场，且 ϕt 是其诱导的流，对于形式场 ω 的 Lie 导数，两种定义是等价的：

£Vω =
d

dt
ϕ∗tω

t=0
= ιV dω+ dιVω

这说明 Cartan 表达式不仅定义了形式场的 Lie 导数，还揭示了其结构公式。

IV. Cartan 恒等式的意义

∣
向量场 V ∈ X(M)；

外微分算子 d；
插入算子（内积）ιV。

值得注意的是，该表达式仅适用于 微分形式场 这一几何对象，对于一般的张量场并不适用

£Vω := ιV dω+ dιVω

∣



符号 作用

ιV dω 先对 ω 求外微分，再插入 V：强调“整体结构的卷曲沿 V  的投影”

dιVω 先插入 V，再取微分：强调“切片形式在 M 上的扩张”

二者加起来就是“ω 随着 V  的流同时变化 + 被拖动”的整体变化。

该表达式不依赖于具体流 ϕt 的存在，因此适用于局部定义、形式计算与无穷维空间。

V. 运算性质

性质 表达式

线性 £aV+bW = a£V + b£W

Leibniz 对楔积 £V (ω ∧ η) = (£Vω) ∧ η+ ω ∧ (£V η)

与外微分可交换 £V ∘ d = d ∘£V（因为 d2 = 0）

VI. 举例（坐标计算）
设 M = R3，V = x ∂

∂y − y ∂
∂x，ω = xdy，则：

ιVω = x ⋅ V y = x ⋅ x = x2；

dω = dx ∧ dy；

ιV dω = ιV (dx ∧ dy) = V xdy− V ydx = (−y)dy− xdx；

故 £Vω = ιV dω+ dιVω = (−y)dy− xdx+ d(x2) = −xdx− ydy+ 2xdx = (xdx− ydy)。


