
E02X. 流形上一般几何对象拉回和推前

一、切映射，向量场的推前

I. 流形间光滑映射 Φ :M → N  诱导切映射 TΦ : TM → TN

切映射的性质定义式：TpΦ(vp)[f] = vp[f ∘ Φ] ∀f ∈ C∞(N)

切映射可以被逐纤维定义 TpΦ : TpM → TΦ(p)N

II. 切向量的推前 Φ∗vp := TpΦ(vp)

（1）切向量推前 Φ∗ 的性质定义式：Φ∗(vp)[f] = vp[f ∘ Φ] ∀f ∈ C∞(N)

（2）该定义说明：切向量推前实际上就是切映射对切向量的作用结果
Φ∗vp := TpΦ(vp)

（3）切向量推前的坐标表示：用坐标基向量的推前说明

设 M 上有坐标图 (x1,… ,xn)，点 p 的局部坐标为 (x1(p),… ,xn(p))，

Φ 在坐标表示下给出：

Φ(x1,… ,xn) = (y1(x),… , yn(x))

其中每个 yj 是 xi 的光滑函数。则坐标基向量的推前为：

也就是说，切映射在坐标基下由雅可比矩阵 J = ( ∂y
j

∂xi ) 实现。

将切向量视为切空间上的点 vp ∈ TpM，则（切向量的）推前映射是切空间间的映

射：Φ∗ : TpM → TΦ(p)N

III. 向量场的推前 Φ∗V  的定义：通过切映射定义
Φ∗V := TΦ ∘ V ∘ Φ−1

（1）向量场推前的性质定义式：(Φ∗V )Φ(p)[f] = Vp[f ∘ Φ]

（2）该定义说明：切向量场的推前，实际上就是切映射逐点作用于向量场在该点的
取值的结果 (Φ∗V )Φ(p) := TpΦ(Vp)
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将向量场视为切丛的一个截面 V ∈ Γ(TM) =: X(M)，则（向量场的）推前映射是截

面空间间的映射：Φ∗ : Γ(TM) → Γ(TN)

二、余切映射，余切向量场的拉回

I. 流形间的光滑映射 Φ :M → N  诱导余切映射 T ∗Φ : T ∗N → T ∗M

余切映射的定义性质：T ∗
Φ(p)Φ(αΦ(p))[vp] = αΦ(p)[TpΦ(vp)]

余切映射可以被逐纤维定义：T ∗
Φ(p)Φ : T ∗

Φ(p)N → T ∗
p (M)

II. 余切向量（1-形式）的拉回：Φ∗αΦ(p) := T ∗
Φ(p)Φ(αΦ(p))

（1）1-形式拉回的性质定义式：Φ∗(αΦ(p))[vp] = αΦ(p)[TpΦ(vp)] ∀vp ∈ TpM

（2）该定义说明：余切向量拉回实际上就是余切映射对余切向量的作用结果
Φ∗αΦ(p) := T ∗

Φ(p)Φ(αΦ(p))

（3）1-形式拉回的坐标表示：用坐标 1-形式（基）的拉回说明

将 1-形式视为余切空间上的点，则（余切向量的）拉回是余切空间间的映射：
Φ∗ : T ∗

Φ(p)N → T ∗
pM

III. 1-形式场拉回的定义：通过余切映射定义：Φ∗ω := T ∗Φ ∘ ω ∘ Φ

（1）1-形式场拉回的性质定义式：(Φ∗ω)p[vp] = ωΦ(p)[Φ∗vp]

（2）该定义说明：1-形式场的拉回，实际上就是余切映射逐点 作用于1-形式场在该
点的取值的结果 (Φ∗ω)p := T ∗

Φ(p)(ωΦ(p))

将余切向量场视为余切丛的一个截面 ω ∈ Γ(T ∗N) =: Ω(N)，则（向量场的）推前映

射是截面空间间的映射：Φ∗ : Γ(T ∗N) → Γ(T ∗M)

三、逻辑顺序梳理：函数的拉回-切映射（-切向量的推
前）-余切映射（-1-形式的拉回）
在前文的两节中，我们采取的定义顺序是按照以下逻辑：

T ∗
Φ(p)Φ (dyj) =
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∣



使用“光滑丛间光滑映射诱导切映射”的思路定义了流形间光滑映射 Φ :M → N  在流形的切丛
上诱导的切映射 TΦ : TM → TN，定义性质要求切映射满足局部表达式 TpΦ(v)[f] = v[f ∘ Φ]

然后定义流形上任意 切向量 v 的推前 Φ∗ : TpM → TΦ(p)N  ；要求满足 Φ∗v[f] = v[f ∘ Φ]

但是 v[f ∘ Φ] =: TpΦ(v)[f]
因此 Φ∗v = TpΦ(v), v ∈ TpM；换言之 切向量的推前 和 （局部）切映射作用于切向量
本质上是同一回事

如果（合理地）将切向量和推前后的切向量都视为（流形上光滑函数的）泛函，则

推前后的切向量作为泛函 可以写作复合函数形式 Φ∗v := v ∘ Φ∗， 其中 Φ∗ 是定义
在 C∞(N) 上的拉回映射

如果（非正式地）将切向量和推前后的切向量都视为（流形上1-形式的）泛函，则
推前后的切向量作为泛函 可以写作复合函数形式 Φ∗v := v ∘ T ∗

Φ(p)Φ = v ∘ Φ∗ ；其
中Φ∗ 和局部余切映射 T ∗

Φ(p)Φ 都是1-形式的拉回，即定义在 T ∗
Φ(p)N  上的拉回映射

再切向量的推前的基础上定义 向量场的推前 Φ∗V：要求满足局部表达式

(Φ∗V )Φ(p)[f] = Vp[f ∘ Φ]

但是 Vp[f ∘ Φ] =: TpΦ(Vp)[f]

因此 (Φ∗V )Φ(p) = TpΦ(Vp)；换言之 切向量场的推前 和 （局部）切映射作用于向量
场在局部的场值 本质上是同一回事
并且，向量场的推前映射 Φ∗ : X(M) → X(N) 是截面空间间的映射（因为向量场可
以视为切丛的截面）Φ∗ : Γ(TM) → Γ(TN)，其对具体向量场作用效果可以写作复

合函数形式：Φ∗V = TΦ ∘ V ∘ Φ−1

然后利用 切映射 定义 余切映射 T ∗Φ : T ∗N → T ∗M 为其对偶结构，即要求满足 局部表达式
T ∗
Φ(p)Φ(α)[v] = α[TpΦ(v)]

同理，利用 切向量的推前 定义 余切向量的拉回 Φ∗ : T ∗
Φ(p)N → T ∗

pM 为其对偶结构，即要求
满足 Φ∗α[v] = α[Φ∗v]

但是 α[Φ∗v] = α[TpΦ(v)] = T ∗
Φ(p)Φ(α)[v]

因此 Φ∗α[v] = T ∗
Φ(p)Φ(α)[v]；换言之 1-形式的拉回 和 （局部）余切映射作用于1-形式

本质上是同一回事

如果（合理地）将1-形式和拉回后的1-形式都视为（流形上切向量的）泛函，则 拉
回后的1-形式作为泛函 可以写作复合函数形式 Φ∗α = α ∘ TpΦ = α ∘ Φ∗ ，其中 Φ∗

和局部切映射 TpΦ 都是切向量的推前，即定义在 TpM 上的推前映射

再在 1-形式 的拉回的基础上定义 1-形式场的拉回 Φ∗ω ：要求满足局部表达式
(Φ∗ω)p[v] = ωp[Φ∗v]

但是 ωp[Φ∗v] = ωp[TpΦ(v)] = T ∗
Φ(p)Φ(ωp)[v]

因此 (Φ∗ω)p = T ∗
Φ(p)Φ(ωp)；换言之 1-形式场的拉回 和 （局部）余切映射作用于1-

形式场的局部场值 本质上是同一回事
并且，1-形式场的拉回映射 Φ∗ : Ω1(N) → Ω1(M) 也是截面空间间的映射（1-形式
场可以视为余切丛的截面）Φ∗ : Γ(T ∗N → T ∗M)，其对具体1-形式场的作用效果可
以写成复合函数形式：Φ∗ω = T ∗Φ ∘ ω ∘ Φ



在此整理复合函数形式的几个公式：

推前后的切向量：  , ,

推前后的切向量场：  ;

拉回后的1-形式：  ,

拉回后的1-形式场：  .

以及切向量的推前/1-形式的拉回的局部定义表达式：

, ;

, .

四、切向量的拉回，余切向量的推前

I. 切向量的拉回，切向量场的拉回

切向量的拉回 Φ∗w := (Φ−1)∗w

切向量场的拉回 Φ∗W := (Φ−1)∗W

设 Φ :M → N  是一个微分同胚，即存在光滑逆映射 Φ−1 : N →M，则我们可以定义 N  上向量场
W ∈ X(N) 沿 Φ 的拉回为：

其中第一个等号定义了切向量场的拉回，第二个等号是来自切向量场推前的定义

II. 余切向量的推前，余切向量场的推前

余切向量的推前 Φ∗β := (Φ−1)∗α

余切向量场的推前 Φ∗γ := (Φ−1)∗γ

类似地，设 γ ∈ Ω1(M) 是定义在 M 上的 1-形式场，我们可以定义它沿 Φ 的推前为：

五、任意张量场的拉回
一个张量场 T ∈ Γ(T (r,s)M) 是一个 (r, s) 型张量：接受 s 个向量和 r 个 1-形式为输入，返回标
量。

Φ∗v := v ∘ Φ∗ Φ∗v := v ∘ T ∗
Φ(p)Φ = v ∘ Φ∗

Φ∗V = TΦ ∘ V ∘ Φ−1

Φ∗α = α ∘ TpΦ = α ∘ Φ∗

Φ∗ω = T ∗Φ ∘ ω ∘ Φ

(Φ∗V )Φ(p)[f] = Vp[f ∘ Φ] (Φ∗V )Φ(p) = TpΦ(Vp)

(Φ∗ω)p[v] = ωp[Φ∗v] (Φ∗ω)p = T ∗
Φ(p)Φ(ωp)

Φ∗W := (Φ−1)∗W = T (Φ−1) ∘W ∘ Φ

Φ∗γ := (Φ−1)∗γ = T ∗Φ−1 ∘ γ ∘ Φ



设 ϕ :M →M 为微分同胚，张量场关于其的拉回定义为：

定义：ϕ∗T  是使得如下恒等式成立的唯一张量场：

也就是说， 张量场的拉回 ϕ∗T  作用于一组切向量和余切向量，等价于：

六、拉回算子的结构性质
设 Φ :M → N  是一个微分同胚（diffeomorphism），我们总结它诱导的拉回 Φ∗ 在几何对象上的
重要结构性质。

I. 张量积结构的自然性

拉回 Φ∗ 是张量代数上的代数同态，即满足：

此外也满足：

拉回是张量代数中的”函子性操作“，并保持各类张量操作结构的自然一致性

II. 类型保持（Type Preservation）

对于任意张量场 T ∈ Γ(T (r,s)M)，其拉回 Φ∗T  仍然是一个 (r, s) 型张量场：

T ∈ Γ(T (r,s)M) ⟹ Φ∗T ∈ Γ(T (r,s)M)

这意味着拉回不会改变张量的“输入结构”：接受 s 个向量，r 个 1-形式。

II. 张量积与对称性保持（Compatibility with Tensor Operations）

拉回与张量代数中的基本结构运算相容：

(ϕ∗T )p(v1,… , vs;α1,… ,αr) = Tϕ(p)(Tpϕ(v1),… ,Tpϕ(vs);T
∗
p ϕ(α

1),… ,T ∗
p ϕ(α

r))

将向量输入项 vi 推前至 ϕ(p)；
将 1-形式输入项 αj 拉回至 ϕ(p)；

在 ϕ(p) 处由 T  给出结果。

Φ∗(T ⊗ S) = Φ∗T ⊗Φ∗S

作用于函数的拉回 Φ∗f = f ∘ Φ；

对任意自然张量运算（例如对称、外积、收缩等）都有：

这使得拉回成为张量代数中的函子性操作，并保持各类张量操作结构的自然一致性。

Φ∗(F(T )) = F(Φ∗T )



（1）张量积保持

（2）对称性与反对称性保持

若张量 T  在某些指标上对称或反对称，则其拉回 Φ∗T  在对应指标上具有相同性质。
例如：

换言之：拉回 Φ∗ 是一个张量代数上的同态

III. 外微分与拉回的交换性（For Differential Forms）

对于任意 k-形式 ω ∈ Ωk(M)，拉回与外微分 d 交换：

证明思路：

这是微分几何中极其重要的结构性质，使得“形式的变化结构”在光滑变换下保持一致性。

IV. 自同构性质（当 Φ 为微分自同胚）

若 Φ :M →M 是微分自同胚，即 Φ 可逆且 Φ−1 也是光滑的，则拉回算子 Φ∗ 是张量场空间上的
自同构，满足：

结论：由流形

自同胚诱导的拉回操作在微分形成张量空间的自同构，为构造“等价几何结构”提供基础。

Φ∗(T ⊗ S) = Φ∗T ⊗Φ∗S

微分形式是全反对称 (0, k) 张量，其拉回仍是全反对称的 k-形式；
对称张量的拉回仍保持对称性。

Φ∗(dω) = d(Φ∗ω)

利用外微分的局部定义（基于 C∞ 函数与 1-形式），结合拉回在函数与 1-形式上的定义；

结构上源于外微分的自然性（functoriality）；
实质上说明：d 是自然变换，故与光滑映射拉回交换。

可逆性：

(Φ−1)∗ ∘ Φ∗ = id, Φ∗ ∘ (Φ−1)∗ = id

在各类张量空间上均为线性同构映射；

保持张量类型与代数结构。


