
一、统计物理与系综理论

1. 统计物理的背景
对于宏观系统，求解其组成满足的动力学方程组不现实；因此我们更关注宏观系统的

统计学性质，例如某种物理量在系统内的分布、期望、涨落

概率统计的基本概念：概率分布，期望，方差

（1）期望 ⟨X⟩

（2）方差 ⟨(X − ⟨X⟩)2⟩ = ⟨X 2⟩ − ⟨X⟩2

（3）涨落（标准差）ΔX :=√⟨(X − ⟨X⟩)2⟩

（4）相对涨落 ΔX
⟨X⟩

2. 中心极限定理与宏观量的可预测性

I. 中心极限定理 （CLT）

中心极限定理（CLT）：大量独立、同分布随机变量 Xi 的和 S 也是随机分布，且当
N →∞ 时，S ∼ N (Nμ,Nσ2) ，其中 μ := ⟨Xi⟩ 且 σ2 := ⟨X 2

i ⟩ − ⟨Xi⟩
2

CLT 的直接推论： S
N
∼ N (μ, σ2

N
) ，其中 μ,σ 取与 CLT 中相同的定义

II. CLT 的物理意义

由于物理系统的宏观量往往要么可以理解为 ∑N
i Xi 要么可以理解为 1

N
∑

N
i Xi ，且

Xi, i = 1, . . . ,N  服从相同的分布，因此宏观量的概率分布服从中心极限定理描述的
Gauss 分布

可以将 CLT 的两种表述分别对应广延量（extensive quantity）Sn =∑
n
i Xi 和强度

量（intensive quantity）Sn/n := 1
n
∑

n
i Xi

（1）广延量的期望和方差都随系统规模线性增长；但相对涨落（也就是标准差与期
望之比）∼ 1

√N
 与系统规模的方根成反比



（2）强度量的期望与系统规模无关，方差与系统规模成反比；同样地，相对涨落
∼ 1

√N
 与系统规模的方根成反比

不论是广延量还是强度量，其相对涨落（relative fluctuation）都与系统规模的方根
成反比，因此平衡态宏观热力学量是“确定的”或者说“可预测的”

热力学的确定性就被解释为：大体系的统计平均值几乎不随微观涨落而变

3. 系综的基本观念
直观理解：系综 (ensemble) 是许多虚拟系统的集合，每个系统代表在相同宏观条件
下可能出现的某一种微观状态

数学定义：系综就是一个概率空间 (Γ,Σ, ρ)

（1）相空间 Γ：系统所有可能微观态（相）的集合（相空间，phase space），相空
间中的任意点可以用相空间坐标 (p, q) = (p1, . . . , pn; q1, . . . , qn) 描述，相空间中的一
个点（相）就代表系统一个可能的微观态

（2）可测集族 Σ：相空间上的 σ 代数 （可测集族，即系统的可及态集合，
accessible region）

（3）概率分布函数 ρ(p, q, t) ：其中 (p, q) 是相空间坐标 （因为一组确定的 (p, q) 即
确定了系统中所有粒子的广义坐标和广义动量，即对应系统的一个微观态），

ρ(p, q) dp dq 表示在相空间微元 dp dq 找到系统的概率

我们关心的是，对于不同的物理情景，概率分布函数 ρ(p, q) 取什么样的形式

4. 平衡态统计物理的最小公理集

I. 等概率原理（Principle of Equal A Priori Probability）

等概率原理（Principle of Equal A Priori Probability）：在一个孤立系统的平衡态
中，所有满足宏观约束条件（如能量、粒子数、体积）的微观状态等概率出现

（1）孤立系统：与外界没有能量和粒子数交换

（2）这意味着平衡态孤立系统的每个微观态的概率都为 1Ω，其中 Ω 表示系统的所有
可及微观态总数

等概率原理是构造“微正则系综”的起点，也是后续构造所有热力学系综的起点



II. 遍历性或等效性假设（Ergodic Hypothesis / Typicality）

遍历性假设：长时间平均 = 系综平均；或者说，几乎所有微观轨迹在长时极限下都
会“均匀覆盖”相空间上满足能量约束的区域


