
二、热力学量与公理由系综导出

1.微正则系综 （microcanonical ensemble）
I. 系统的构造与概率分布

系统自身构成一个孤立系统，满足宏观约束 (E,V ,N)
根据 等概率假设，系统自身已经符合等概率假设，因此

p(s) =
Ω(s)

Ω(E,V ,N)
=

1
Ω(E,V ,N)

其中 Ω(E,V ,N) 表示满足宏观约束 (E,V ,N) 的微观态总数

II. 配分函数

由于配分函数被定义为 概率分布的归一化系数 ,它直接等于满足宏观约束 (E,V ,N) 的系统微观
态的总数，即

Ω(E,V ,N)

本身

III. 热力学势

任意系综下，大数定理 要求 系综的平衡态对应最大的概然，大数定理赋予平衡态的这种性质对
应于热力学第二定律。平衡态概然的最大化最终体现为某个可以由胚分函数表出的物理量的极大

化/极小化，我们称这个物理量为该系综的 热力学势。
特别地，在微正则系综语境下，我们可以证明大数定理对平衡态的要求最终体现为使 Ω(E,V ,N)
最大。

但我们不想讲 Ω(E,V ,N) 作为热力学势，因为它并非在仍以系综下都能良定义；因此我们寻找一
个在任意系综下良定义，且在微正则系综中满足“当 Ω(E,V ,N) 极大化时它也极大化”的物理量；
具体而言，这个物理量就是 吉布斯熵（Gibbs entropy），在任意系综下都被定义为：

特别地，在正则系综下，吉布斯熵退化到 波尔兹曼熵（Boltzmann entropy），可以证明：

S = kB lnΩ(E,V ,N), in microcanonical ensemble

热力学第二定律在微正则系综中就体现为：当微正则系综处于平衡态时，其吉布斯熵最大化

S := −kB∑
i

pi ln pi



IV. 热力学量由热力学势或配分函数定义/表出

由于 S = S(E,V ,N)，我们可以将热力学量定义为其全微分项：

也就是说，热力学量在微正则系综下可以由 微正则系综的热力学势（波尔兹曼熵） 定义
等价地，由于孤立系统的波尔兹曼熵可以由微正则系综的配分函数 Ω(E,V ,N) 表出，热力学量
T ,P ,μ 在微正则系综下自然也可以由 微正则配分函数 Ω(E,V ,N) 表出

热力学第一定律在微正则系综下的表现形式也被称为 热力学基本关系

dE = TdS − PdV + μdN

V. 热力学定律的表现形式

2. 正则系综（canonical ensemble）

I. 系统的构造与概率分布

对象系统 S 与热库 R 构成一个孤立系统
由等概率假设，总系统处在 “使对象系统处于态 i” 的微观态的概率为

pi ∝ ΩR(Etot −Ei)

由于热库相比对象系统大得多，可以证明热库的吉布斯熵具有波尔兹曼熵形式，因此

SR = kB ln(ΩR(Etot −Ei))

故而上述概率密度 pi 可以写为熵的指数形式

pi ∝ exp[
1
kB

SR(Etot −Ei)]

对 SR 关于 Etot 展开，并将偏导数表为热力学量，可以得到 正则系综的概率分布

p(s) ∝ exp[−
Es

kBT
] =: exp[−βEs]

II. 配分函数

配分函数定义为上述概率分布的归一化系数

Z(T ,V ,N) = ∫ ds exp (−βEs)

dS =
1
T
dE +

P

T
dV −

μ

T
dN

热力学第二定律在微正则系综下表现为：S := −kB ∑i pi ln pi 在平衡态被最大化

热力学第一定律在微正则系综下表现为：dE = TdS − PdV + μdN



III. 热力学势

在 正则系综 语境下，我们可以证明大数定理对平衡态的要求最终体现为使 E − TS =: F  最大，
我们将 正则系综的热力学势 称为 亥姆霍兹自由能（Hemholtz free energy）：

热力学第二定律在正则系综下就体现为：当正则系综处于平衡态时，其亥姆霍兹自由能极小化

另外，可以说明，上述定义的亥姆霍兹自由能可以用 配分函数表出 为：

F := −kBT lnZ

IV. 热力学量由热力学势或配分函数表出

由 热力学基本关系 dE = TdS − PdV + μdN  和 Hemholtz 自由能的定义 F = E − TS,，容易得
到：

由此可得热力学量 S,P ,μ 作为 F(T ,V ,N) 的偏导表出
又由于 F(T ,V ,N) 本身可以由 正则配分函数 Z = ∫ ds exp[−βEs] 表出，因此热力学量也可以直
接由正则配分函数表出

V. 热力学定律的表现形式

3. 巨正则系综（grandcanonical ensemble）

I. 系统的构造与概率分布

对象系统 S 与一个热库 R 构成一个孤立系统，且对象系统和热库间可交换粒子
由等概率假设，系统处在“使对象系统处在态 s = (N , i)”的微观态的概率为

pi,N ∝ ΩR(Etot −Ei,Ntot −N)

热库的吉布斯熵具有波尔兹曼熵形式，因此

SR = kB ln(ΩR(Etot −Ei,Ntot −N))

故而上述概率密度 pi 可以写为熵的指数形式

pi ∝ exp[
1
kB

SR(Etot −Ei,Ntot −N)]

F := E − TS

dF = dE − TdS − SdT = −SdT − PdV + μdN

热力学第二定律在正则系综下表现为：F := E − TS = −kBT lnZ 在平衡态被最小化
热力学第一定律在正则系综下表现为：dF = −SdT − PdV + μdN



对 SR 关于 Etot 展开，并将偏导项表为热力学量，可以得到 正则系综的概率分布

p(s) ∝ exp[−
Es

kBT
+

μN

kBT
] =: exp[−βEs + βμN ]

II. 配分函数

配分函数定义为上述概率分布的归一化系数

Z(T ,V ,μ) = ∫ ds exp [−β(Es − μN)]

III. 热力学势

在 巨正则系综 语境下，我们可以证明大数定理对平衡态的要求最终体现为使
E − TS − μN = F − μN =: ΦG 最大，我们将 正则系综的热力学势 称为 巨势（grand
potential）：

热力学第二定律在正则系综下就体现为：当巨正则系综处于平衡态时，其巨势极小化

另外，可以说明，上述定义的亥姆霍兹自由能可以用 配分函数表出 为：

ΦG := −kBT lnZ

IV. 热力学量由热力学势或配分函数表出

由 热力学基本关系 dE = TdS − PdV + μdN  和 巨势的定义 ΦG = E − TS − μN ,，容易得到：

由此可得热力学量 S,P ,μ 作为 ΦG(T ,V ,μ)) 的偏导表出
又由于 ΦG(T ,V ,μ) 本身可以由 巨正则配分函数 Z = ∫ ds exp[−β(Es − μN)] 表出，因此热力学
量也可以直接由巨正则配分函数表出

V. 热力学定律的表现形式

4. 三种系综下热力学量由热力学势表出的一致性

I. 热力学基本关系 dE = TdS − PdV + μdN  （可以视作热力学量的
定义式）

ΦG := E − TS − μN = F − μN

dΦG = dE − TdS − SdT − μdN −Ndμ = −SdT − PdV −Ndμ

热力学第二定律在巨正则系综下表现为：ΦG := E − TS − μN = −kBT lnZ 在平衡态被最小
化

热力学第一定律在巨正则系综下表现为：dΦG = −SdT − PdV −Ndμ



II. 微正则系综的热力学势就是 S，大数定理保证“微正则系综的平衡
态使 S 极大化”，S 在正则系综中的极大化体现了热力学第二定律

III. 定义 Helmholtz 自由能 F := E − TS，我们称 F  是正则系综的热
力学势，因为大数定理保证“正则系综的平衡态使 F  极小化”，F  在
正则系综中的极小化体现了热力学第二定律

IV. 定义巨势 ΦG := F − μN，我们称 ΦG 是巨正则系综的热力学势，
因为大数定理保证“巨正则系综的平衡态使 ΦG 极大化”， ΦG 在巨正
则系综中的极大化体现了热力学第二定律

V. 三种热力学势在三种系综中分别可以用配分函数表述；又其定义和
热力学基本关系表明它们互为勒让德变换，因此热力学量可以用三种
热力学势分别等价定义/表出；因此三种系综中的热力学量都可以用
配分函数表出


