Assignment 1

Zheng Shen (zhengshen@physics.run zheng.shen@student.kuleuven.be)
Kunal Dhawan (kunal.dhawan@student.kuleuven.be)

Exercise 1

As you might have noticed, we freely use numerous basic notions from mechanics,
electrodynamics, quantum mechanics, and special relativity.

If you feel a little unsure about some of this, take some time to review the necessary
material from your old courses (or elsewhere — the web is often a valuable source of
information).

Do not hesitate to discuss and ask questions to your colleagues.

Exercise 2

Carefully study chapter 2 in Mandl & Shaw.

Pay particular attention to section 2.4 where the relation between constants of
motion, divergence-less currents and tensors, and symmetries are studied.
This chapter is very essential, so please devote sufficient time to it.

As an application, show that for the (gauge-fixed) Maxwell theory with Lagrange
density (function)

L=-1p,4,0"A"

)
the energy-momentum tensor is
TH = —9FAPOYA, + %77“” 0,A,0°A°

Using the equations of motion following from the Lagrangian above (calculate them!),
show that

0,T" =0
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indeed holds.

What are, for this theory, the expressions for the energy E and the momentum p?

Solution 2

I. Energy Momentum Tensor from Lagrangian Density

(0) canonical Noether energy—momentum tensor

We use the canonical Noether energy-momentum tensor (from spacetime

translations):

or
T — 9% gvg oy
(8,4, °

(1) the derivative term
From the given Lagrangian,
L=-210,A50%A°

Plug into the first term of the definition of energy-momentum tensor

oL 1 [a(aaAﬁ 9 AP)
8(0,4,) 2

= — _HHAP
ey )= O

(2) result

Hence

TH = (— 9" AP) 8" A, — L.

and finally as we insert Lagrangian density function explicitly, the energy-momentum

tensor is explicitly:

1
TW = —0"A? 0" Ay + 51" Bads 9°AP



Il. Energy-momentum Conservation on the Equation of
Motion

(1) Euler-Lagrange equations from Lagrangian Density claims
[JAY =0

Treat A, as the set of fields. Since £ has no explicit A, dependence,

oL oL
=0, ——— = —0rAY
04, = 9(9,4,)

Inserting these into Euler—Lagrange equation then claims:

oL ) _ L =0 = 0,(-0"4")=0 = 0OA"=0,0"A"=0

8
s ( 8(0,4,)) 04,

So each component satisfies the wave equation (this corresponds to the Lorenz
gauge—fixed, free Maxwell theory).

(2) Divergencelessness of energy-momentum tensor

From |. Energy Momentum Tensor from Lagrangian Density we have the explicit form

of energy momentum tensor in terms of field:

TH — —QrAP VA, + % " 8,4, 8°A°. (%)

and we want to prove: 0,T*” = 0 on the equations of motion.
1
o, T = — 0,,(8“A” 6”Ap) + 5 8“(0PAU 6”A")

1
= —(0,0"A*)0"A, — 0" A*0,0"A, + 5 0"(0,A,07A7%).
N——
04,
where the first equality is just definitions. And as we get the second equality, we
notice that on the EOM, 0JA, = 0 (cuz we chose the Lorentz gauge? ), so the

middle term vanishes; on the last term use Leibniz and commuting derivatives in flat
space:

[(0"0,A5)(07 A7) + (0,45)(8"0" A7)| = (9,0" A5) (9" A7),

| -

1
= 0"(9)A45 07 A%) =



where in the last step we relabeled dummy indices and used symmetry.
Rename indices p— v, o — p to match the first term:

% 9 (---) = (8,0 AP) B A,

This cancels the first term remaining and thus:

0,TH = —(8,0"AP) 0 A, + (8,0"A°) 9" A, = 0.

Expression for Energy and momentum

(0) Definition of the conserved 4-momentum

Define the conserved 4-momentum as
P’ = / P T
(1) Energy as the time component of 4-momentum
E=P°= / d*zT®, T =-04784,+ %n‘m 0,A, 07 A°
(2) Momentum as the spacial part of 4-momentum
Since n% =0,
T% = - 9470’4,  p'=Pi= / d*zT"

Please find explicit form in hand-written version

Exercise 3

Given a set of fields ¢,, a € {1,---,n}, with a Lagrange density that depends only on
the fields themselves and their first-order derivatives, i.e.,

L= L(¢,09).



Show that by varying the action S = ¢! [ d*z L, the equations of motion (Euler—
Lagrange equations) are

oL oL
(aa00) 8.

Now rederive these equations of motion by discretizing space (approximate
space by a lattice with lattice spacing ¢ and at the end take the limit £ — 0) and
using the standard expression for the Euler—Lagrange equations.

Some more details: discretize “space” by a lattice with side length £.

The fields on the lattice are given by ¢*)(¢), {4, j, k} € Z3, such that in the limit
¢ — 0 we have

lim ¢4 (£) = u(t, 7).
£—0

Upon discretization of space the Lagrangian becomes (see the lecture)

L = Z 63 E(i,j,k),

(i.5,k) €23

L:/d?’:zc.

From mechanics, the Euler—Lagrange equations are

which in the limit £ — 0 gives

d_oL oL _,

E aq.s((;'vjak) aqs((zzvjak)

Analyze this equation carefully and show that it indeed reduces to

oL oL
M%@Qﬁ@% (1)

in the limit ¢ — 0.

Solution 3
l. Field EOM from Variation of Action



(0) Setup
Start from
Sig) = ¢ [ a2 £(60,8,00)

We perform an infinitesimal variation ¢, — ¢, + d¢,:

6S =c! / diz (gqf S, + % 5(%%))
a u¥a

(1) Second term integrate by parts

Integrate the second term by parts:

oL oL
/d4m 5(0,00) 8(0,0a) = /d4a: {—fh(m)&ba] + surface term

we can drop the surface term (since d¢, vanishes on the boundary)

(2) Combine and use extremal condition

Combining two terms yields the total variation of action:

R .
5= [ | 55 3“(6@%))]5%

Then by setting §5 = 0 for arbitrary d¢, gives the Euler—Lagrange equations:

oL oL
a“(@(@ma)) “ 06,

Il. Field EOM from the Continuum Limit of Classical EL
equation

(0) Motivation

In classical mechanics, the Euler—Lagrange (EL) equation follows from
minimizing the action



yielding

d OL OL

dt 8g;  Oq; =0

In field theory, each field value at a point in space plays the role of a coordinate
q;. Thus, the field equation of motion may arise as the continuum limit of the EL
equations for a system with infinitely many coordinates.

(1) Setup

Cubic lattice of spacing £, sites i = (i, j, k) € Z3, positions Z. = £i.

Fields on sites: gbZ(t) ~ ¢a(t, 7).

Use the central difference for spatial derivatives (consistent and O(¢?)):
O

(8m¢a) ~ 2£ ) m € {137@/, Z}

Discrete Lagrangian:

Lig, ¢l = Y L with £ =£(¢], $i, (Omda)’)

2

From standard mechanics, for any coordinate ¢,(f’j’k)(t),

df oL \__oL _

d /5 oL (63k) s oL (1:5:k)

Dividing by #3,

d [ oLk oL (13k)
dt 9b0iH) B i) -



(2) Recovering spatial derivatives in the continuum limit

In the discretized picture, the spatial derivatives inside £ are replaced by finite
differences.
For example,

¢u () — D)

0:0a(t, %) = 57

The Lagrangian density therefore depends on the neighboring lattice sites:

(i+1,j,k)_¢((1i71,j,k) ¢(i,j+1,k)_ (1,5—1,k) ¢gi,j,k+1)_ (4,5,k—1)
2/ ’ 2/ ’ 2/

£(i7jak) — E( ((ziajak), ¢a a a a

When we differentiate £*) with respect to gb,(f’j’k), it picks up contributions not only

from the point itself but also from the neighboring points, because qbff’j’k) appears in
the finite-difference expressions.

Collecting contributions from all spatial directions and time:
d [ 0Lk . 6( oL )
dt\ a4, "\ 9(30a)

1[ac<i+1usk> acu—laswl ( oc >
(100:00  8(0,00) "\ 9(0.4.)

and

and similarly for y, z.

Thus the discrete Euler—Lagrange equations become, in the limit £ — 0,

=0

a( oL )_ oL
"\ 0(9,9.) 0¢a

which is exactly the field-theoretic Euler-Lagrange equation.

Exercise 4



Given a scalar field ¢(z, t) with Lagrange density

2.2
pme

L=30,00"¢— 53— "= V(9),

where V(¢) is a real function of ¢ (often called the potential):

Calculate the equations of motion by varying the action.
Do you recognize this equation when V(¢) = 0?

Solution 4
I. EOM (EL Equations) from Action

(1) Derive EL Equation by variantion

The action is defined by

1
5= [ £(6,0,0)

Vary with respect to ¢:

55— 1 / d*z [% 5 + oL 5(0u¢)]

c ¢ 8(8u¢)
1l o
= [d [(% t 50,9) 6"““”]

Integrate by parts the second term (and drop the boundary term, since §¢ = 0 at

infinity):
1 e oL
0S = = /d T [_BczS — a”<—3(8u¢) )}5¢

Setting §S = 0 for arbitrary §¢ yields the Euler—Lagrange equation:

=0

5 < oL )_ oL
"\0(0u0) ) 09

(2) Insert Lagrangian density into EL equation and get explicit EOM



Derivative with respect to 0,¢:

oL
= 9t
0(0,.9)
Derivative with respect to ¢:
oL m?c? ,
8_¢ T T TR ¢ —V'(¢)
where V' (¢) = dV /d¢.
Plug into the Euler—-Lagrange equation:
m?2c? p
0,0"¢ + —5—¢+V'(¢) =0

(3) Packaging
The operator 9,,0* is the d’Alembertian in Minkovskian space:

DE@HaM:?W—V

Therefore, the field equation can be written as

2 2
O¢ + ";_l—f¢+ V'(4) = 0.

Il. Special case: V(¢) = 0 : KG Equation for a free
massive scalar field

If V(¢) =0, then V'(¢) = 0, and we obtain

m202

h?

O + ¢ =0

This is the Klein—Gordon equation for a free massive scalar field:

(04 m?c*/h*)¢ = 0.




Exercise 5

Extend the one-dimensional harmonic oscillator analysis from class to the n-
dimensional isotropic harmonic oscillator with Hamiltonian

H= Z<_p1 + ‘332)
nd commutation relations

9:, 5] = [pi, 5] = O, (Gi, Dj] = ihdij.

Determine operators a; and a}L as linear combinatio ns of ¢; and p; such that

la;,a;] = [aT a ] =0,

[CLi, a;r] = 6”

Rewrite H in terms of these operators. Determine the ground state and energy

spectrum. Note the degeneracies at each energy level.

Show that the n? operators a,j.a,j commute with H.

Determine the Cartan subalgebra, i.e. the maximal abelian subset of these
operators (there are n of them).

Show that the energy eigenstates are also eigenstates of this abelian subset.

Solution 5
|. Determine Ladder Operators

(1) Recall 1-dimenssional solution
In one dimension,

mw t
= _— a' =

‘/ hw 2h

mw
q_

i
2

vV 2mhw

where w = /k/m.

(2) Generalize to n-dimenssion and verify comutation relation

We generalize this to each coordinate i = 1,...,n



') . ; mw 7
a; = ﬁ(ﬁ =+ Wpi, a;, =

~

—qi; — Di
2h vV 2mhw

To verify these definitions satisfy the commutation relation, we compute

‘2

2mhw

mw

T . ..
la;,a;] = oh — i, 4;] + ———[p:, Pj] + 2—h([qi,pj]+[pi,qj])-

of which the first two terms are trivial, and since [g;, p;] = ihd;;, the last term cancels:
and thus [al,aj = 0];
Similarly, [a! =0;

Then we check the last relation where

ijs
z’ ]]
T . _A . ~ ~ . ~
j] — [ 7;7‘-:(11 + mpia %qj - \/Q;mej}
and thus

=

T oa 4 A A
[a’iaa’j [QZaqj] + [pij] ﬁ([QMPJ] o [pian]) = 52‘j

Il. Express H in terms of a; and solve for Energy
Spectrum

(0) Hamiltonian in terms of canonical observables

Hamiltonian of QHO is defined by:
H= Z(_Pa 59 ) 9i,45] = [Pi, 5] = 0, (i, pj] = ihdi

(1) Express p;, q; in terms of a;
From the definitions we invert:

h

R . hmw
w(aﬂral), p; =1 5 (alf

- ai)

(2) Rewrite H



Substitute (1) into (0) term by term:

1 hw
2m p’ 4

(a;f - ai)27 549 =

Add together:

1 k., hw
_pz + ~4 =

T 2 271
om 2 - e —a)* + (ai +a))*] =

Using commutation relation aia;-r = afai + 1,

H= th(aaz )-hw(N—i— )

where the second equality is the definition of total number operator:
N = Z aZai
=1

(3) Ground state energy

The ground state |0) is defined as the state annihilated by all a;:
ai|0) =0, i1=1,...,n

We then check this is indeed an energy eigenstate: since by this defintion we have

NI|0) = (Za a,) 0) =0

hence Hamiltonian acting on it gives
H|0) = hw (0 + 2)]0) = —hw 0)
Therefore, the ground-state energy is
E() = %hw

(4) Energy spectrum



Starting from |0), we can build a general number state

where n; € Ny counts how many quanta occupy mode :.

Because [a;[ai, a;aj] = 0, these states are simultaneous eigenstates of all number

operators:

a}ai\nl, ceyNy) = NN, My)
and thus thet are also energy eigenstates.
Operating with H:

I{I|n1,...,nn> :th(ni—l—%)lnl,...,nn>

read the energy eigenvalues

E,,.  n, =hw (Z n; + %) = hw(Nyot + %)
i=1

where Ny, = n1 + ny + - - - + n,, is the total excitation number.

(5) Degeneracy counting

For fixed N,,; = N, the degeneracy equals the number of integer partitions
of NV into n nonnegative integers:

<N +n— 1)
gnN =

n—1
lll. Bilinear Operators o/,
We define the bilinear operators

1
Eij = a;a;

(1) Verify that bilinear operators aTa,j commutates with Hamiltonian

1

Compute their commutator with H:



i

H, E;j] = hw Z[azak, ajaj] = hw([aTai,aIaj] + [a}aj,a;raj]) =0
k

Thus all E;; commute with H.

(2) A quick reminder of Lie algebra

A Lie algebra is a vector space g equipped with a binary operation
(the Lie bracket |-, -|) satisfying three properties:

Bilinearity:

[aX +bY,Z] = a[X, Z] + b]Y, Z], etc.

Antisymmetry:

(X,Y] =-[Y, X].

Jacobi identity:

(X, Y, Z||+[Y,[Z,X]]+ [Z,[X,Y]] = 0.

When these are satisfied, (g, [, -]) is called a Lie algebra.

(3) {Ei;}, [-,-]) indeed form a Lie algebra
We use the product rule:
By, Eu] = alaj, alai] = al[aj, allai — a}fas, al]a,
using [aj,aL] = d;;, and [al,a;.r] = dy;, we get
[Eija Ekl] = 5jka1al - 51202%' = 5jl<:Eil - 5z'lEkj

and thus E;; generate the Lie algebra u(n) under commutation, since:

Linearity: obvious from the linearity of the commutator.

Antisymmetry: since [E;;, Ey| = —[Ey, E;;j], this holds.

Jacobi identity: holds automatically for all commutators of operators,
because the commutator bracket in operator algebra always satisfies Jacobi.

(4) Cartan subalgebra

The Cartan subalgebra is the maximal abelian subset of this Lie algebra.
Since we have shown that:

[Eij, Ey) = 6By — 63 Ey;



a natural choice on elements of the subset is the diagonal set:
Hi:Eii:a;rai, izl,...,n

since [H;, H;] = 0 ensures it's abelian. These are just the number operators we
defined in (4) Energy spectrum, each measures the occupation number in mode 1.

The simultaneous eigenstates of all H; are the number states
Iny,...,n,) with

Hiny,...,n,) =ngng, ..., ng,),

which are also energy eigenstates of H.

IV. Takeaways

The n-dimensional oscillator is a set of n independent 1D oscillators.
The Hamiltonian depends only on the total number operator N = . alai.
The symmetry group of the degeneracies is U(n), generated by ajaj.
Each energy level Ey = hw(N + n/2) forms a representation of U(n) of
dimension (V")

n—1

Exercise 6

At the end of the previous lecture we introduced the harmonic oscillators ar(E) and
al(k), where r € {0,1,2,3} and k € (2r/L)Z3, satisfying

—

a,(k), a; ()] = [al(R), al(K")] = 0,

and

(k) al(R)] = G 0,587 Crap = +1, G = —1

Define the Hermitian operator

3

N(k) =" ¢ al (k) an (),

r=0



and show that

IN(E), al (k)] = 65,z al(k),  [N(K), ar(k)] = =0; 7 ar(R).

Then reread the last part of the lecture where the ground state and first excited
states were analyzed.

Solution 6

l. Commutator [N(k), al (k)]
(1) Use linearity of commutator

Start from linearity of commutator:

(2) Use Lebniz rule of commutator

(For more detailed proof, refer to Lecture 1Y Commutator as a Lie Derivative, online
Lecture 1X : Topological Groups, Lie Groups and Lie Algebra in Quantum Physics

(revised) - Physics Reserved Labour)
Use the Leibniz rule [AB,C| = A[B,C] + [A,C]|B

= 326 (al(F)as(k), al (R)] + [al (), al ()] as (K))

The second bracket vanishes because [a}, a}] = 0.
For the first:

[as(R), al(R)] = (s 65 65,

(3) Sum over indices
[ ? 7" ] = ZCS Cs 687’ 5k’ ) == 5%’,7& (II(E)

(We used (2 =1.)


https://physics.run/lecture-1x-topological-groups-lie-groups-and-lie-algebra-in-quantum-physics/
https://physics.run/lecture-1x-topological-groups-lie-groups-and-lie-algebra-in-quantum-physics/

Il. Commutator [N (%), a, (k)]

Similarly,
IN(E), 0, (8)) = 3 ¢, lal (F)as (k) a,(F)]

which, computed by Leibniz rule, is:

—

=3 ¢ (al(B)las(®), ar(B) + [al (B), ar(R)]as (K))

Again the first bracket vanishes because [as, a,| = 0.
For the second:

[al("), ar ()] = —[a,(k), al (B)] = — ¢, 6,05
so eventually we have

[N(_’I)a ar(i‘;)] - Z Cs( — G Ors 5}5,75:) as(El) - - 5}5:,2 ar(i‘;)

Exercise 7

After introducing periodic boundary conditions x ~x + L, y~y+ L, z~ z+ L, we
obtained the solution

A4() = A(z) + A (),

with

and




where V = L® and w; = c||.
The oscillators satisfy the commutation relations given above.

Show that to take the limit L — oo, we must rescale

arB) = a:8) = || Gz B 3B = @)

In this limit, give the commutation relations satisfied by &, (k) and &/ (k).

Give the expressions for A’ (z) and A* (z) in that limit.

Solution 7
I. Necessity of Rescaling
(0) Setup
We start from the finite-volume (periodic box) mode solution:
A (z) = Al (z) + AL (),
and ladder operators obeying:
ar(k), a,(F)) = [af (B), al(B)] = 0, [an(R), al(F)] = ¢, 6,4 6y,

with C1,273 = +1 and CO = —1.
Our goal is to take L — oo (continuum limit) carefully so that:

sums over discrete k£ become integrals over R3,
Kronecker deltas become Dirac deltas,
field operators remain finite and have the standard continuum commutators.

(1) What if we use the finite/discrete form directly?

In a periodic box, the allowed momenta are k = 277 with 7 € Z>.
The sum over k is a Riemann sum with k-space cell volume



(AR)® = (2%)3 _ (2‘7;)3

Hence, for any "well-defined" function f, when we take the infinite limit, we'll
have:

S ) —— (;)3 [ @1
k

Likewise, the Kronecker delta in momentum space converts to a Dirac delta with
the inverse measure:

. (2m)3

G (%
At

Which means if we do nothing to the operators a,ﬂé), then:
the sum » . brings in a factor V,

the field prefactor 4/c*/(2Vw;) brings a factor V12

so the overall scaling would be « vV, which diverges as L — .
Therefore, a compensating rescaling of the oscillators is necessary to keep
A#(z) finite.

(2) Construct the rescaling

To cancel the o v/V overall divergence, the natural solution is to impose that:

a,(k) = SomeFatcor - \/%a}(%)

and to preserve normalization, we choose:

N %4 - > (2m)3 _ -
ar(k)\/W a.(k) < ar(k)\/ v a-(k).

So that all powers of V' cancel exactly and normalization preserved:

%4 y 1 y (2m)3 _
@em? v VvV

the field is finite and has the standard continuum normalization.




(3) Verify the rescaled operator

Check the commutator:

v

&r_”dl k)] =
0., al(F) -

la,(K), al (k)] =

1
|

e

—

v
3 Cr 67"3 5%%: m Cr 67"3 (277)3 5(3)(

(2)
where we used 4 ;, — @ 5@ (k — k).
Similarly,

@n(k), a,(K")] = [al(k), al(K")] = 0.

Therefore, in the continuum limit

@ (k),al (k)] = ¢ 6rs 2m)* 6P (K - K),  [a,a] = [al,af] = 0.

Il. Solutions in Continuum Limit
(1) A quick reminder

Use:

and

(2) Substitue and give results

For A% (z):

: V(s [ e [ femr o o,




and this is equal to

In the same manner, A" (z) gives

0o e [ o

Thus, in the continuum limit, we conclude:

A= =0 / 2m)3/2 \/qu ﬁ(z) dr(E) e,
§ ’ m ~ +ik-x
" / 27)3/2 \/2wﬁ er (k) @z (k) e

Exercise 8

While we are presently developing the material in chapter 5 of Mandl & Shaw, it is
most useful to read chapter 3 (scalar fields) alongside it.

Because of their simple Lorentz-transformation properties and the absence of gauge
symmetry, scalar fields are in many respects simpler than massless vector fields
while still illustrating many important concepts.

At this point it is highly advisable to carefully study sections 3.1 and 3.2.

Exercise 9

Together with this assignment you received a file Poincaré.pdf developing the
representation theory of the Poincaré group.
Study it carefully!



You may take your time, but you should have a grasp of it by the end of this calendar
year.



