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Exercise 1
As you might have noticed, we freely use numerous basic notions from mechanics,
electrodynamics, quantum mechanics, and special relativity.
If you feel a little unsure about some of this, take some time to review the necessary
material from your old courses (or elsewhere — the web is often a valuable source of
information).
Do not hesitate to discuss and ask questions to your colleagues.

Exercise 2
Carefully study chapter 2 in Mandl & Shaw.
Pay particular attention to section 2.4 where the relation between constants of
motion, divergence-less currents and tensors, and symmetries are studied.
This chapter is very essential, so please devote sufficient time to it.

As an application, show that for the (gauge-fixed) Maxwell theory with Lagrange
density (function)

L = − 1
2

∂μAν ∂μAν

the energy-momentum tensor is

T μν = −∂μAρ ∂ νAρ + 1
2 η

μν ∂ρAσ ∂ ρAσ

Using the equations of motion following from the Lagrangian above (calculate them!),
show that

∂νT
μν = 0
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indeed holds.
What are, for this theory, the expressions for the energy E and the momentum →p?

Solution 2
I. Energy Momentum Tensor from Lagrangian Density
(0) canonical Noether energy–momentum tensor

We use the canonical Noether energy–momentum tensor (from spacetime
translations):

T μν =
∂L

∂(∂μAρ)
∂ νAρ − ημν L

(1) the derivative term

From the given Lagrangian,

L = − 1
2 ∂αAβ ∂αAβ

Plug into the first term of the definition of energy-momentum tensor

∂L

∂(∂μAρ)
= −

1

2
[

∂(∂αAβ ∂αAβ)

∂(∂μAρ)
] = − ∂μAρ

(2) result

Hence

T μν = ( − ∂μAρ) ∂ νAρ − ημνL.

and finally as we insert Lagrangian density function explicitly, the energy-momentum
tensor is explicitly:

T μν = − ∂μAρ ∂ νAρ +
1

2
ημν ∂αAβ ∂αAβ



II. Energy-momentum Conservation on the Equation of
Motion

(1) Euler–Lagrange equations from Lagrangian Density claims
□Aν = 0

Treat Aν as the set of fields. Since L has no explicit Aν dependence,

∂L

∂Aν

= 0,
∂L

∂(∂μAν)
= − ∂μAν

Inserting these into Euler–Lagrange equation then claims:

∂μ(
∂L

∂(∂μAν)
) −

∂L

∂Aν

= 0 ⇒ ∂μ(−∂μAν) = 0 ⇒ □Aν ≡ ∂μ∂μAν = 0

So each component satisfies the wave equation (this corresponds to the Lorenz
gauge–fixed, free Maxwell theory).

(2) Divergencelessness of energy-momentum tensor

From I. Energy Momentum Tensor from Lagrangian Density we have the explicit form
of energy momentum tensor in terms of field:

and we want to prove: ∂νT
μν = 0 on the equations of motion.

where the first equality is just definitions. And as we get the second equality, we
notice that on the EOM, □Aρ = 0 (cuz we chose the Lorentz gauge？), so the
middle term vanishes; on the last term use Leibniz and commuting derivatives in flat
space:

1

2
∂μ(∂ρAσ ∂ ρAσ) =

1

2
[(∂μ∂ρAσ)(∂ ρAσ) + (∂ρAσ)(∂μ∂ ρAσ)] = (∂ρ∂μAσ)(∂ ρAσ),

T μν = − ∂μAρ ∂ νAρ +
1

2
ημν ∂ρAσ ∂ ρAσ. (★)

∂νT
μν = − ∂ν(∂μAρ ∂ νAρ) +

1

2
∂μ(∂ρAσ ∂ ρAσ)

= − (∂ν∂μAρ) ∂ νAρ − ∂μAρ ∂ν∂ νAρ

□Aρ

+
1

2
∂μ(∂ρAσ ∂ ρAσ).





where in the last step we relabeled dummy indices and used symmetry.
Rename indices ρ→ν, σ→ρ to match the first term:

1

2
∂μ(⋯) = (∂ν∂μAρ) ∂ νAρ.

This cancels the first term remaining and thus:

∂νT
μν = −(∂ν∂μAρ) ∂ νAρ + (∂ν∂μAρ) ∂ νAρ = 0.

Expression for Energy and momentum

(0) Definition of the conserved 4-momentum

Define the conserved 4-momentum as

P ν = ∫ d3xT 0ν

(1) Energy as the time component of 4-momentum

E ≡ P 0 = ∫ d3xT 00, T 00 = − ∂ 0Aρ ∂ 0Aρ +
1

2
η00 ∂ρAσ ∂ ρAσ

(2) Momentum as the spacial part of 4-momentum

Since η0i = 0,

T 0i = − ∂ 0Aρ ∂ iAρ, pi ≡ P i = ∫ d3xT 0i

Please find explicit form in hand-written version

Exercise 3
Given a set of fields ϕa, a ∈ {1, ⋯ ,n}, with a Lagrange density that depends only on
the fields themselves and their first-order derivatives, i.e.,

L = L(ϕ, ∂ϕ).



Solution 3
I. Field EOM from Variation of Action

Show that by varying the action S = c−1∫ d4xL, the equations of motion (Euler–
Lagrange equations) are

∂μ(
∂L

∂(∂μϕa)
) −

∂L

∂ϕa

= 0.

Now rederive these equations of motion by discretizing space (approximate
space by a lattice with lattice spacing ℓ and at the end take the limit ℓ → 0) and
using the standard expression for the Euler–Lagrange equations.
Some more details: discretize “space” by a lattice with side length ℓ.
The fields on the lattice are given by ϕ(i,j,k)

a (t), {i, j, k} ∈ Z3, such that in the limit
ℓ → 0 we have

lim
ℓ→0

ϕ
(i,j,k)
a (t) = ϕa(t, →x).

Upon discretization of space the Lagrangian becomes (see the lecture)

L = ∑
(i,j,k)∈Z3

ℓ3
L

(i,j,k),

which in the limit ℓ → 0 gives

L = ∫ d3
→xL.

From mechanics, the Euler–Lagrange equations are

d

dt

∂L

∂ϕ̇
(i,j,k)
a

−
∂L

∂ϕ
(i,j,k)
a

= 0.

Analyze this equation carefully and show that it indeed reduces to

in the limit ℓ → 0.

∂μ(
∂L

∂(∂μϕa)
) −

∂L

∂ϕa

= 0, (10)



(0) Setup

Start from

S[ϕ] = c−1∫ d4xL(ϕa, ∂μϕa)

We perform an infinitesimal variation ϕa → ϕa + δϕa:

δS = c−1∫ d4x( ∂L

∂ϕa

δϕa +
∂L

∂(∂μϕa)
δ(∂μϕa))

(1) Second term integrate by parts

Integrate the second term by parts:

∫ d4x
∂L

∂(∂μϕa)
δ(∂μϕa) = ∫ d4x [−∂μ(

∂L

∂(∂μϕa)
)δϕa] + surface term

we can drop the surface term (since δϕa vanishes on the boundary)

(2) Combine and use extremal condition

Combining two terms yields the total variation of action:

δS = c−1∫ d4x [ ∂L

∂ϕa

− ∂μ(
∂L

∂(∂μϕa)
)]δϕa

Then by setting δS = 0 for arbitrary δϕa gives the Euler–Lagrange equations:

II. Field EOM from the Continuum Limit of Classical EL
equation
(0) Motivation

∂μ(
∂L

∂(∂μϕa)
) −

∂L

∂ϕa

= 0.

In classical mechanics, the Euler–Lagrange (EL) equation follows from
minimizing the action



(1) Setup

S = ∫ L(qi, q̇i, t) dt,

yielding

d

dt

∂L

∂q̇i
−

∂L

∂qi
= 0.

In field theory, each field value at a point in space plays the role of a coordinate
qi. Thus, the field equation of motion may arise as the continuum limit of the EL
equations for a system with infinitely many coordinates.

Cubic lattice of spacing ℓ, sites →i = (i, j, k) ∈ Z3, positions →x
→i

= ℓ→i.

Fields on sites: ϕ→i
a(t) ≈ ϕa(t, →x

→i
).

Use the central difference for spatial derivatives (consistent and O(ℓ2)):

(∂mϕa)
→i ≈

ϕ
→i+m̂
a − ϕ

→i−m̂
a

2ℓ
, m ∈ {x, y, z}

Discrete Lagrangian:

L[ϕ, ϕ̇] = ∑
→i

ℓ3 L
→i with L

→i = L(ϕ
→i
a,  ϕ̇

→i
a,  (∂mϕa)

→i)

From standard mechanics, for any coordinate ϕ(i,j,k)
a (t),

d

dt
( ∂L

∂ϕ̇(i,j,k)
a

) −
∂L

∂ϕ(i,j,k)
a

= 0

Substitute L = ∑(i,j,k) ℓ3 L(i,j,k):

d

dt
(ℓ3 ∂L(i,j,k)

∂ϕ̇(i,j,k)
a

) − ℓ3 ∂L(i,j,k)

∂ϕ(i,j,k)
a

= 0

Dividing by ℓ3,

d

dt
( ∂L(i,j,k)

∂ϕ̇(i,j,k)
a

) −
∂L(i,j,k)

∂ϕ(i,j,k)
a

= 0



(2) Recovering spatial derivatives in the continuum limit

In the discretized picture, the spatial derivatives inside L are replaced by finite
differences.
For example,

∂xϕa(t, →xi,j,k) ≈
ϕ

(i+1,j,k)
a (t) − ϕ

(i−1,j,k)
a (t)

2ℓ

The Lagrangian density therefore depends on the neighboring lattice sites:

L
(i,j,k) = L(ϕ

(i,j,k)
a ,

ϕ
(i+1,j,k)
a − ϕ

(i−1,j,k)
a

2ℓ
,
ϕ

(i,j+1,k)
a − ϕ

(i,j−1,k)
a

2ℓ
,
ϕ

(i,j,k+1)
a − ϕ

(i,j,k−1)
a

2ℓ
)

When we differentiate L(i,j,k) with respect to ϕ(i,j,k)
a , it picks up contributions not only

from the point itself but also from the neighboring points, because ϕ(i,j,k)
a  appears in

the finite-difference expressions.

Collecting contributions from all spatial directions and time:

d

dt
(

∂L(i,j,k)

∂ϕ̇a

) ⟶ ∂0(
∂L

∂(∂0ϕa)
)

and

1

ℓ
[ ∂L(i+1,j,k)

∂(∂xϕa)
−

∂L(i−1,j,k)

∂(∂xϕa)
] ⟶ ∂x(

∂L

∂(∂xϕa)
)

and similarly for y, z.

Thus the discrete Euler–Lagrange equations become, in the limit ℓ → 0,

which is exactly the field-theoretic Euler–Lagrange equation.

Exercise 4

∂μ(
∂L

∂(∂μϕa)
) −

∂L

∂ϕa

= 0



Given a scalar field ϕ(→x, t) with Lagrange density

L = 1
2 ∂μϕ ∂μϕ − 1

2

m2c2

ℏ2
ϕ2 − V (ϕ),

where V (ϕ) is a real function of ϕ (often called the potential):

Solution 4
I. EOM (EL Equations) from Action

(1) Derive EL Equation by variantion

The action is defined by

S =
1

c
∫ d4xL(ϕ, ∂μϕ)

Vary with respect to ϕ:

Integrate by parts the second term (and drop the boundary term, since δϕ = 0 at
infinity):

δS =
1

c
∫ d4x [ ∂L

∂ϕ
− ∂μ(

∂L

∂(∂μϕ)
)]δϕ

Setting δS = 0 for arbitrary δϕ yields the Euler–Lagrange equation:

(2) Insert Lagrangian density into EL equation and get explicit EOM

1. Calculate the equations of motion by varying the action.
2. Do you recognize this equation when V (ϕ) = 0?

δS =
1

c
∫ d4x [ ∂L

∂ϕ
δϕ +

∂L

∂(∂μϕ)
δ(∂μϕ)]

=
1

c
∫ d4x [ ∂L

∂ϕ
δϕ +

∂L

∂(∂μϕ)
∂μ(δϕ)]

∂μ(
∂L

∂(∂μϕ)
) −

∂L

∂ϕ
= 0



Plug into the Euler–Lagrange equation:

∂μ∂μϕ +
m2c2

ℏ2
ϕ + V ′(ϕ) = 0

(3) Packaging

The operator ∂μ∂μ is the d’Alembertian in Minkovskian space:

□ ≡ ∂μ∂μ =
1

c2

∂ 2

∂t2
− →∇2.

Therefore, the field equation can be written as

II. Special case: V (ϕ) = 0 : KG Equation for a free
massive scalar field
If V (ϕ) = 0, then V ′(ϕ) = 0, and we obtain

□ϕ +
m2c2

ℏ2
ϕ = 0

This is the Klein–Gordon equation for a free massive scalar field:

1. Derivative with respect to ∂μϕ:

∂L

∂(∂μϕ)
= ∂μϕ

2. Derivative with respect to ϕ:

∂L

∂ϕ
= −

m2c2

ℏ2
ϕ − V ′(ϕ)

where V ′(ϕ) ≡ dV /dϕ.

□ϕ +
m2c2

ℏ2
ϕ + V ′(ϕ) = 0.

(□ + m2c2/ℏ2)ϕ = 0.



Exercise 5
Extend the one-dimensional harmonic oscillator analysis from class to the n-
dimensional isotropic harmonic oscillator with Hamiltonian

Ĥ =
n

∑
j=1

( 1

2m
p̂ 2
j +

k

2
q̂ 2
j ),

nd commutation relations

[q̂i, q̂j] = [p̂i, p̂j] = 0, [q̂i, p̂j] = iℏ δij.

Solution 5
I. Determine Ladder Operators

(1) Recall 1-dimenssional solution

In one dimension,

a = √mω

2ℏ
q̂ +

i

√2mℏω
p̂, a† = √mω

2ℏ
q̂ −

i

√2mℏω
p̂,

where ω = √k/m.

(2) Generalize to n-dimenssion and verify comutation relation

We generalize this to each coordinate i = 1, … ,n:

1. Determine operators ai and a†
i  as linear combinatio ns of q̂i and p̂i such that

[ai, aj] = [a†
i
, a†

j
] = 0,

[ai, a
†
j] = δij.

2. Rewrite Ĥ in terms of these operators. Determine the ground state and energy
spectrum. Note the degeneracies at each energy level.

3. Show that the n2 operators a†
i
aj commute with Ĥ.

Determine the Cartan subalgebra, i.e. the maximal abelian subset of these
operators (there are n of them).
Show that the energy eigenstates are also eigenstates of this abelian subset.



ai = √mω

2ℏ
q̂i +

i

√2mℏω
p̂i, a

†
i = √mω

2ℏ
q̂i −

i

√2mℏω
p̂i.

To verify these definitions satisfy the commutation relation, we compute

[ai, aj] =
mω

2ℏ
[q̂i, q̂j] +

i2

2mℏω
[p̂i, p̂j] +

i

2ℏ
([q̂i, p̂j] + [p̂i, q̂j]).

of which the first two terms are trivial, and since [q̂i, p̂j] = iℏδij, the last term cancels:
and thus [ai, aj = 0];
Similarly, [a†

i , a
†
j] = 0;

Then we check the last relation where

[ai, a
†
j] = [√ mω

2ℏ q̂i + i

√2mℏω
p̂i, √ mω

2ℏ q̂j − i

√2mℏω
p̂j]

and thus

[ai, a
†
j] =

mω

2ℏ
[q̂i, q̂j] +

i2

2mℏω
[p̂i, p̂j] +

i

2ℏ
([q̂i, p̂j] − [p̂i, q̂j]) = δij

.

II. Express Ĥ in terms of ai and solve for Energy
Spectrum
(0) Hamiltonian in terms of canonical observables

Hamiltonian of QHO is defined by:

Ĥ =
n

∑
j=1

( 1

2m
p̂ 2
j +

k

2
q̂ 2
j ), [q̂i, q̂j] = [p̂i, p̂j] = 0, [q̂i, p̂j] = iℏ δij

(1) Express p̂i, q̂i in terms of ai

From the definitions we invert:

q̂i = √ ℏ

2mω
(ai + a

†
i ), p̂i = i√ ℏmω

2
(a†

i − ai)

(2) Rewrite Ĥ



Substitute (1) into (0) term by term:

1

2m
p̂2
i =

ℏω

4
(a†

i − ai)
2,

k

2
q̂2
i =

mω2

2

ℏ

2mω
(ai + a

†
i )

2 =
ℏω

4
(ai + a

†
i )

2.

Add together:

1

2m
p̂2
i +

k

2
q̂2
i =

ℏω

4
[(a†

i
− ai)

2 + (ai + a
†
i
)2] =

ℏω

2
(aia

†
i

+ a
†
i
ai)

Using commutation relation aia†
i = a

†
iai + 1,

Ĥ = ℏω
n

∑
i=1

(a†
iai + 1

2 ) =: ℏω (N + n
2 )

where the second equality is the definition of total number operator:

N =
n

∑
i=1

a
†
i
ai

(3) Ground state energy

The ground state |0⟩ is defined as the state annihilated by all ai:

ai|0⟩ = 0, i = 1, … ,n

We then check this is indeed an energy eigenstate: since by this defintion we have

N |0⟩ = (∑
i

a
†
iai)|0⟩ = 0

hence Hamiltonian acting on it gives

Ĥ|0⟩ = ℏω (0 + n
2 )|0⟩ =

n

2
ℏω |0⟩

Therefore, the ground-state energy is

E0 =
n

2
ℏω

(4) Energy spectrum



Starting from |0⟩, we can build a general number state

|n1,n2, … ,nn⟩ =
n

∏
i=1

(a†
i )

ni

√ni!
|0⟩

where ni ∈ N0 counts how many quanta occupy mode i.

Because [a†
iai, a

†
jaj] = 0, these states are simultaneous eigenstates of all number

operators:

a
†
iai|n1, … ,nn⟩ = ni|n1, … ,nn⟩

and thus thet are also energy eigenstates.
Operating with Ĥ:

Ĥ|n1, … ,nn⟩ = ℏω
n

∑
i=1

(ni + 1
2 )|n1, … ,nn⟩

read the energy eigenvalues

En1,…,nn
= ℏω(

n

∑
i=1

ni + n
2 ) = ℏω(Ntot + n

2 )

where Ntot = n1 + n2 + ⋯ + nn is the total excitation number.

(5) Degeneracy counting

For fixed Ntot = N , the degeneracy equals the number of integer partitions
of N  into n nonnegative integers:

gN = (N + n − 1

n − 1
)

III. Bilinear Operators a†
iaj

We define the bilinear operators

Eij = a
†
iaj

(1) Verify that bilinear operators a†
iaj commutates with Hamiltonian

Compute their commutator with Ĥ:



[Ĥ,Eij] = ℏω∑
k

[a†
k
ak, a†

iaj] = ℏω([a†
iai, a

†
iaj] + [a†

jaj, a
†
iaj]) = 0

Thus all Eij commute with Ĥ.

(2) A quick reminder of Lie algebra

A Lie algebra is a vector space g equipped with a binary operation
(the Lie bracket [⋅, ⋅]) satisfying three properties:

(3) ({Eij}, [⋅, ⋅]) indeed form a Lie algebra

We use the product rule:

[Eij,Ekl] = [a
†
iaj, a

†
kal] = a

†
i [aj, a

†
k]al − a

†
k[al, a

†
i ]aj

using [aj, a†
k
] = δjk and [al, a†

i
] = δli, we get

[Eij,Ekl] = δjka
†
i
al − δlia

†
k
aj = δjkEil − δilEkj

and thus Eij generate the Lie algebra u(n) under commutation, since:

(4) Cartan subalgebra

The Cartan subalgebra is the maximal abelian subset of this Lie algebra.
Since we have shown that:

[Eij,Ekl] = δjkEil − δilEkj

1. Bilinearity:
[aX + bY ,Z] = a[X,Z] + b[Y ,Z], etc.

2. Antisymmetry:
[X,Y ] = −[Y ,X].

3. Jacobi identity:
[X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X,Y ]] = 0.
When these are satisfied, (g, [⋅, ⋅]) is called a Lie algebra.

Linearity: obvious from the linearity of the commutator.
Antisymmetry: since [Eij,Ekl] = −[Ekl,Eij], this holds.
Jacobi identity: holds automatically for all commutators of operators,
because the commutator bracket in operator algebra always satisfies Jacobi.



a natural choice on elements of the subset is the diagonal set:

Hi = Eii = a
†
iai, i = 1, … ,n

since [Hi,Hj] = 0 ensures it's abelian. These are just the number operators we
defined in (4) Energy spectrum, each measures the occupation number in mode i.

The simultaneous eigenstates of all Hi are the number states
|n1, … ,nn⟩ with

Hi|n1, … ,nn⟩ = ni|n1, … ,nn⟩,

which are also energy eigenstates of Ĥ.

IV. Takeaways

Exercise 6
At the end of the previous lecture we introduced the harmonic oscillators ar(→k) and
a

†
r(→k), where r ∈ {0, 1, 2, 3} and →k ∈ (2π/L)Z3, satisfying

[ar(→k), as(→k
′)] = [a†

r(→k), a†
s(→k

′)] = 0,

and

[ar(→k), a†
s(
→k′)] = ζr δrs δ→k,→k′ , ζ1,2,3 = +1, ζ0 = −1

Define the Hermitian operator

N(→k) =
3

∑
r=0

ζr a
†
r(
→k) ar(→k),

The n-dimensional oscillator is a set of n independent 1D oscillators.
The Hamiltonian depends only on the total number operator N = ∑i a

†
iai.

The symmetry group of the degeneracies is U(n), generated by a†
iaj.

Each energy level EN = ℏω(N + n/2) forms a representation of U(n) of
dimension (N+n−1

n−1 ).



and show that

[N(→k′), a†
r(→k)] = δ

→k′,→k
a†
r(→k), [N(→k′), ar(→k)] = −δ

→k′,→k
ar(→k).

Then reread the last part of the lecture where the ground state and first excited
states were analyzed.

Solution 6
I. Commutator [N(→k′), a†

r(→k)]

(1) Use linearity of commutator

Start from linearity of commutator:

[N(→k′), a†
r(
→k)] =

3

∑
s=0

ζs [a†
s(
→k′) as(→k

′), a†
r(
→k)]

(2) Use Lebniz rule of commutator

(For more detailed proof, refer to Lecture 1Y Commutator as a Lie Derivative, online
Lecture 1X : Topological Groups, Lie Groups and Lie Algebra in Quantum Physics
（revised） - Physics Reserved Labour)
Use the Leibniz rule [AB,C] = A[B,C] + [A,C]B:

= ∑
s

ζs(a†
s(
→k′)[ as(→k

′), a†
r(
→k)] + [a†

s(
→k′), a†

r(
→k)] as(→k

′))

(3) Sum over indices

[N(→k′), a†
r(→k)] = ∑

s

ζs a
†
s(→k

′) (ζs δsr δ
→k′,→k

) = δ
→k′,→k

a†
r(→k)

(We used ζ 2
s = 1.)

The second bracket vanishes because [a†
s, a

†
r] = 0.

For the first:

[ as(→k
′), a†

r(
→k)] = ζs δsr δ→k′,→k

https://physics.run/lecture-1x-topological-groups-lie-groups-and-lie-algebra-in-quantum-physics/
https://physics.run/lecture-1x-topological-groups-lie-groups-and-lie-algebra-in-quantum-physics/


II. Commutator [N(→k′), ar(→k)]

Similarly,

[N(→k′), ar(→k)] = ∑
s

ζs [a†
s(
→k′)as(→k

′), ar(→k)]

which, computed by Leibniz rule, is:

= ∑
s

ζs(a†
s(→k

′)[as(→k
′), ar(→k)] + [a†

s(→k
′), ar(→k)]as(→k

′))

Again the first bracket vanishes because [as, ar] = 0.
For the second:

[a†
s(
→k′), ar(→k)] = −[ar(→k), a†

s(
→k′)] = − ζr δrs δ→k,→k′

so eventually we have

[N(→k′), ar(→k)] = ∑
s

ζs( − ζr δrs δ→k,→k′) as(→k
′) = − δ

→k′,→k
ar(→k)

Exercise 7
After introducing periodic boundary conditions x ≃ x + L, y ≃ y + L, z ≃ z + L, we
obtained the solution

Aμ(x) = A
μ
+(x) + A

μ
−(x),

with

A
μ
+(x) =

3

∑
r=0

∑
→k∈ 2π

L Z3

√ c2

2V ω
→k

εμr (→k) ar(→k) e−ik⋅x,

and

A
μ
−(x) =

3

∑
r=0

∑
→k∈ 2π

L Z3

√ c2

2V ω
→k

εμr (→k) a†
r(→k) e+ik⋅x,



where V = L3 and ω
→k

= c|→k|.
The oscillators satisfy the commutation relations given above.

Solution 7
I. Necessity of Rescaling

(0) Setup

We start from the finite-volume (periodic box) mode solution:

Aμ(x) = A
μ
+(x) + A

μ
−(x),

and ladder operators obeying:

[ar(→k), as(→k
′)] = [a†

r(→k), a†
s(→k

′)] = 0, [ar(→k), a†
s(→k

′)] = ζr δrs δ→k,→k′ ,

with ζ1,2,3 = +1 and ζ0 = −1.
Our goal is to take L → ∞ (continuum limit) carefully so that:

(1) What if we use the finite/discrete form directly?

In a periodic box, the allowed momenta are →k = 2π
L
→n with →n ∈ Z3.

The sum over →k is a Riemann sum with k-space cell volume

1. Show that to take the limit L → ∞, we must rescale

ar(→k) → ~ar(→k) = √ V

(2π)3
ar(→k), ~a†

r(
→k) = (~ar(→k))†.

In this limit, give the commutation relations satisfied by ~ar(→k) and ~a†
r(→k).

2. Give the expressions for Aμ
+(x) and Aμ

−(x) in that limit.

sums over discrete →k become integrals over R3,
Kronecker deltas become Dirac deltas,
field operators remain finite and have the standard continuum commutators.



(Δk)3 = (
2π

L
)

3

=
(2π)3

V

(2) Construct the rescaling

To cancel the ∝ √V  overall divergence, the natural solution is to impose that:

ar(→k) = SomeFatcor ⋅ √ 1

V
~ar(→k)

and to preserve normalization, we choose:

~ar(→k) ≡ √ V

(2π)3
ar(→k) ⟺ ar(→k) = √ (2π)3

V
~ar(→k).

So that all powers of V  cancel exactly and normalization preserved:

V

(2π)3
×

1

√V
× √ (2π)3

V
= 1

the field is finite and has the standard continuum normalization.

Hence, for any "well-defined" function f, when we take the infinite limit, we'll
have:

∑
→k

f(→k)
V

(2π)3
∫ d3k f(→k)−→

L→∞

Likewise, the Kronecker delta in momentum space converts to a Dirac delta with
the inverse measure:

δ
→k,→k′

(2π)3

V
δ(3)(→k − →k′)

Which means if we do nothing to the operators ar(→k), then:

−→
L→∞

the sum ∑
→k
 brings in a factor V ,

the field prefactor √c2/(2V ω
→k
) brings a factor V −1/2,

so the overall scaling would be ∝ √V , which diverges as L → ∞.
Therefore, a compensating rescaling of the oscillators is necessary to keep
Aμ(x) finite.



(3) Verify the rescaled operator

Check the commutator:

[~ar(→k), ~a†
s(→k

′)] =
V

(2π)3
[ar(→k), a†

s(→k
′)] =

V

(2π)3
ζr δrs δ→k,→k′ ζr δrs (2π)3 δ(3)(→k − →k′)

where we used δ
→k,→k′ → (2π)3

V
δ(3)(→k − →k′).

Similarly,

[~ar(→k), ~as(→k
′)] = [~a†

r(→k), ~a†
s(→k

′)] = 0.

Therefore, in the continuum limit

II. Solutions in Continuum Limit
(1) A quick reminder

Use:

and

ar(→k) = √ (2π)3

V
 ~ar(→k)

(2) Substitue and give results

For Aμ
+(x):

A
μ
+(x)  ∑

r

V

(2π)3
∫ d3k√ c2

2V ω
→k

 εμr (→k)  √ (2π)3

V
 ~ar(→k)  e−ik⋅x

−→
L→∞

 [~ar(→k), ~a†
s(→k

′)] = ζr δrs (2π)3 δ(3)(→k − →k′), [~a, ~a] = [~a†, ~a†] = 0. 

∑
→k

→
V

(2π)3
∫ d3k

−→
L→∞

⎛⎜⎝ ⎞⎟⎠



and this is equal to

= ∑
r

∫ d3k

(2π)3/2
 √ c2

2ω
→k

 εμr (→k) ~ar(→k) e−ik⋅x

In the same manner, Aμ
−(x) gives

A
μ
−(x) = ∑

r

∫ d3k

(2π)3/2
 √ c2

2ω
→k

 εμr (→k) ~a†
r(
→k) e+ik⋅x

Thus, in the continuum limit, we conclude:

Exercise 8
While we are presently developing the material in chapter 5 of Mandl & Shaw, it is
most useful to read chapter 3 (scalar fields) alongside it.
Because of their simple Lorentz-transformation properties and the absence of gauge
symmetry, scalar fields are in many respects simpler than massless vector fields
while still illustrating many important concepts.
At this point it is highly advisable to carefully study sections 3.1 and 3.2.

Exercise 9
Together with this assignment you received a file Poincaré.pdf developing the
representation theory of the Poincaré group.
Study it carefully!

A
μ
+(x) =

3

∑
r=0

∫ d3k

(2π)3/2
√ c2

2ω
→k

 εμr (→k) ~ar(→k) e−ik⋅x,

A
μ
−(x) =

3

∑
r=0

∫ d3k

(2π)3/2
√ c2

2ω
→k

 εμr (→k) ~a†
r(
→k) e+ik⋅x.



You may take your time, but you should have a grasp of it by the end of this calendar
year.


