
Lecture 1M (Part 1)
This set of notes is bassed on the graduate course "Advanced Quantum Mechanics"
instructed by Prof. Alessio Lerose at KU Leuven. The labels "M,S,P,X" following
lecture number stand for "Main, Supplementary, Problems, and Xplorings", notes
labeled "M" are mostly based on Prof. Alessio Lerose's handwritten lecture notes,
with personal extensions which may not be scientifically rigourous or even wrong
(please kindly contact zhengshen@physics.run if you find any mistake).

Intro: Basics of QM
1. Experimental Facts vs. Classical Predictions
Classical mechanics works well until experimentalist started to use EM radiation as a
probe to investigate the behavior of matter:

Blackbody radiation (EM radiation emitted by a piece of matter in thermal
equilibrium) does not obey the basic laws of classical statistical mechanics.

In particular, the classical equipartition theorem predicts that each
electromagnetic mode should carry an average energy of kBT , leading to an
infinite total energy density when integrating over all frequencies — a
contradiction known as the ultraviolet catastrophe.
Experimental measurements, however, show that the energy density peaks
at a finite frequency and falls off exponentially at high frequencies.
This discrepancy revealed the breakdown of classical physics at
microscopic scales and led Planck to propose that electromagnetic energy
is quantized in units of E = hν = ℏω marking the birth of quantum theory.

Heat capacity of solids (thermal energy stored in atomic vibrations within a
crystal lattice) also fails to follow the predictions of classical statistical mechanics.

In particular, according to the Dulong–Petit law derived from the
equipartition theorem, each atom in a solid should contribute an average
energy of 3kBT , leading to a constant molar heat capacity

CV = 3R

independent of temperature.
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Experimentally, however, the heat capacity of solids drops sharply at low
temperatures and approaches zero as T → 0.
This deviation indicates that lattice vibrations (phonons) cannot have a
continuous range of energies as classical theory assumes. Instead, their
energies are quantized in units of E = ℏω, as described by the Einstein
and later Debye models, which successfully explain the observed
temperature dependence of CV .

Atomic and molecular spectra (the absorption and emission of light by gases)
also violate classical predictions.

In classical electrodynamics, an electron orbiting a nucleus behaves like an
accelerating charge and should continuously radiate electromagnetic
waves.
The emitted radiation would have a continuous range of wavelengths,
determined by the orbital frequency of the electron,

λ =
2πc

ωorbit

and since the electron could spiral inward smoothly, every intermediate
orbital frequency would contribute — producing a continuous emission
spectrum, not the discrete lines seen experimentally.
Moreover, the radiated power of an accelerating charge is given by the
Larmor formula,

P =
e2a2

6πε0c3

which implies that the electron would lose energy rapidly and spiral into
the nucleus.
Estimating the radiative loss for a hydrogen atom gives a classical lifetime
of about 10−11 seconds, meaning the atom would collapse almost instantly
— in stark contrast to the observed stability of matter.
In reality, atoms emit and absorb light only at discrete wavelengths,
corresponding to quantized energy level transitions

ΔE = hν = hc/λ,



as first explained by Bohr’s model and later generalized in quantum
mechanics.

Photoelectric effect (emission of electrons from a metal surface under
illumination) provides another clear failure of classical physics.

The classical prediction is that electrons would be ejected once the
accumulated energy per electron exceeds the work function Φ, with

Ekin ∝ Ilight,

where Ilight is the light intensity, and the emission should occur for any
frequency given sufficient intensity.
In contrast, experiments show that electrons are emitted only if the incident
light has a frequency above a threshold ν0, regardless of its intensity. The
maximum kinetic energy of emitted electrons follows

Ekin = hν − Φ,

increasing linearly with frequency, not with intensity.
Furthermore, the emission occurs without measurable delay, contradicting
the classical accumulation picture.
This behavior can only be explained if electromagnetic radiation consists of
discrete quanta of energy E = hν, each capable of ejecting one electron
— a result first proposed by Einstein (1905), marking a foundational step in
quantum theory.

Scattering of X-rays and γ-rays by matter also exposes the breakdown of
classical physics.

In the classical Thomson scattering picture, electromagnetic waves
scatter elastically off free electrons. The scattered wave should have the
same frequency as the incident one, and the total scattering cross-section
should be independent of photon energy.
Experimentally, however, high-energy photons (X-rays, γ-rays) scattered
from electrons are observed to have a lower frequency (longer
wavelength) than the incident radiation. The wavelength shift depends only
on the scattering angle θ,



Furthermore, why not reason these phenomena in some complicated non-linear
many-body interaction?

Δλ = λ′ − λ =
h

mec
(1 − cos θ),

where h
mec

 is the Compton wavelength of the electron.

This Compton effect cannot be explained by wave theory, since classical
waves cannot change wavelength through elastic scattering.
The correct explanation comes from treating light as particles (photons)
carrying energy E = hν and momentum p = h/λ. The observed wavelength
shift then follows directly from energy-momentum conservation in a
photon–electron collision:

hν + mec
2 = hν ′ +√(pec)2 + (mec2)2.

This experiment provided decisive evidence for the particle-like nature of
light and confirmed the quantum relation between energy and momentum
of photons.

1. Each failure is systematic and universal, not material-specific.
The blackbody spectrum, photoelectric effect, atomic spectra, heat
capacities, and Compton scattering all show precisely the same kind of
deviation from classical predictions — across vastly different systems.
Nonlinear or many-body effects in classical physics typically depend on the
details of the material (density, lattice structure, impurities, etc.), whereas
these quantum behaviors depend only on fundamental constants (h, kB, c,
me).

2. Quantitative predictions match only when energy quantization is assumed.
Planck’s law, Einstein’s photoelectric equation, Bohr’s line spectra, Debye’s
CV ∝ T 3 law, and the Compton shift

Δλ =
h

mec
(1 − cos θ)

all follow from a single postulate: energy and momentum exist in discrete
quanta.



Hence, scientists concluded that these are not the result of some hidden
nonlinearities in classical mechanics, but rather reflect a fundamental discreteness
of energy and probability, requiring the quantum mechanical framework.

2. Formal Structures: QM vs. Classical
I. Classical Mechanics

No classical nonlinear model reproduces exactly these functional forms with
the correct constants.

3. Microscopic measurements show discreteness, not chaos.
If the effects were due to nonlinear many-body interactions, measured
spectra would be irregular or chaotic.
Instead, we observe discrete, sharply defined lines and quantized steps,
matching integer multiples of hν — a clear signature of underlying
quantization.

4. Experiments at single-particle level confirm quantization.
Individual photon or electron detection (e.g., in photoelectric or Compton
experiments) shows discrete energy transfer events, one quantum at a
time.
The statistical distribution of counts follows Poisson or quantum statistics,
not classical intensity fluctuations.
BUT are these experiments really "single particle", what if there are some
hidden interaction with environment that is "many-body" and result in a
statistical result that looks "quantum"?

I'd rather believe in emergent quantum mechanics than believing the
word is ruled by QM/QFT...

5. Quantum theory unifies all of them with one principle.
The same formalism — wavefunctions, operators, and the postulate

E = hν, p = ℏk

— consistently explains blackbody radiation, atomic stability, line spectra,
photoelectric emission, and scattering, with quantitative precision.



Phase space P

The basic object in classical mechanics (CM) is the phase space P.

State ρ

(1) A state is a probability distribution on phase space

A state is a probability distribution on phase space:

ρ(ξ) ≥ 0, ∫
P

dξ ρ(ξ) = 1.

(2) CM allows arbitray precise measurement, and thus assumes the
existence of uncertainty-free states called pure states

In principle, classical mechanics allows arbitrarily precise measurements:

P is a smooth manifold of even dimension d = 2n.
A point in phase space is

ξ = (q, p) ∈ P,

where q = (q1, … , qn) are generalized coordinates and p = (p1, … , pn) are their
conjugate momenta.
Thus, P represents the space of all possible states of a system.

ρ(ξ) represents our epistemic uncertainty about the true configuration of the
system.
The probability of finding the system in a small phase-space volume hn around ξ
is ρ(ξ)hn.
Notice: a state is a probability distribution ρ(ξ) on the phase space where ξ
lives, rather than a specific value of ξ (for instance, ξ = ξ0)

The measurement resolution h can be made arbitrarily small.
Hence, the theory assumes the existence of uncertainty-free states:

ρξ0
(ξ) = δ(ξ − ξ0)

corresponding to exact knowledge of both q and p.



(3) States can be constructed via statistical mixture, and the set of
all states form a convex

Statistical mixtures of states are allowed:

ρ(ξ) = p ρ1(ξ) + (1 − p) ρ2(ξ), 0 ≤ p ≤ 1

In what sense the set of all states forms a convex set?

We call state such that with Kronecker delta probability distribution, i.e.
state that is uncertainty-free, a pure state.
Notice: again, a pure state is the distribution ρξ0

(ξ) = δ(ξ − ξ0) rather than
the specific state value ξ0

The set of all states forms a convex set.
Pure states are the extremal points (corners), while mixed states lie inside the
convex region.

In what sense a convex?

1. Set of classical states
Define the set of all valid probability distributions on phase space:

Scl = { ρ : P → R≥0   ∫
P

dξ ρ(ξ) = 1}.

Each ρ is a legitimate state of the system. ∣2. Definition of convexity
A subset C of a vector space is convex if, for any x1,x2 ∈ C, all convex
combinations

xλ = λx1 + (1 − λ)x2, 0 ≤ λ ≤ 1

also belong to C.
3. Why Scl is convex

For ρ1, ρ2 ∈ Scl, define

ρλ(ξ) = λρ1(ξ) + (1 − λ)ρ2(ξ).

Then:
Non-negativity: ρλ(ξ) ≥ 0.



So basically, from the perspective of convex geometry, a pure state distinguishes
from mixed states in a sense that it can not be expressed as a mixture of mixed
states or pure states;

“Epistemic” means pertaining to knowledge (from Greek epistēmē, “knowledge”).
So an epistemic uncertainty is one that arises because we don’t know something
— not because nature itself is indeterminate.
Take harmonic oscillartor as an example,:

Normalization:

∫ dξ ρλ(ξ) = λ∫ ρ1 + (1 − λ)∫ ρ2 = λ + (1 − λ) = 1

Hence ρλ ∈ Scl, proving convexity.

4. Geometric interpretation
The pure states ρξ0(ξ) = δ(ξ − ξ0) are extremal points — they cannot be
written as mixtures of others.
Mixed states lie inside the convex hull, representing probabilistic mixtures of
pure states.

5. Conceptual meaning
Convexity encodes the idea that classical uncertainty is epistemic — a
mixed state represents ignorance about which pure state the system is
actually in.
Later, in quantum mechanics, the state space is also convex, but pure states
themselves have a fundamentally different, non-epistemic meaning.

A pure state means we know exactly the position and momentum. There is no
uncertainty — if we know the initial condition, we know everything forever.
A mixed state corresponds to a distribution of possible initial conditions.
Physically, this means we have a cloud of oscillators, or a single oscillator
whose initial position/momentum are uncertain. Each member of the ensemble
follows its own deterministic trajectory, but we don’t know which one.
So physically:
A pure state corresponds to one definite trajectory in phase space.
A mixed state corresponds to an ensemble of possible trajectories, weighted by
probability.



(3') A pure state corresponds to one definite trajectory in phase
space; a mixed state corresponds to an ensemble of possible
trajectories, weighted by probability.

Observable O : P → R and Measurement

(1) An observable is a smoon real-valued function on phase space

An observable is a smooth real-valued function on phase space:

O : P → R

Examples: energy H(q, p), position qi, momentum pi, etc.

(2) Expectation value ⟨O⟩ of an observable on a given state is an
integral

For a given state ρ, the expectation value of an observable O is

⟨O⟩ρ = ∫
P

dξ ρ(ξ)O(ξ).

This is the average result of many measurements performed on identically prepared
systems.

(3) The probability of an experimental measurement gives an
outcome in an interval is an integral

A real measurement of O gives an outcome in an interval (λj,λj + Δ) with
probability:

P(O \in [\lambda_j, \lambda_j + \Delta]) = \int_{\mathcal{P}_\Delta=\{\lambda -

χΩ represents the yes/no question “Is the system’s state ξ inside the region Ω?”
Measuring χΩ thus tells us whether the system’s microstate lies within Ω.
The expectation value

⟨χΩ⟩ρ = ∫
P

dξ ρ(ξ)χΩ(ξ) = ∫
Ω

dξ ρ(ξ)



Hence, the elementary observables χΩ serve as the building blocks of all
classical observables, linking the abstract function O(ξ) to experimentally
measurable yes/no events in phase space.

Phase-Space Transformations and Dynamics

The central idea of Hamiltonian mechanics is that the evolution of a physical system
can be understood as a special kind of continuous (active) transformation on
phase space.
We start from the general notion of phase-space transformation, identify the
physically meaningful subclass (canonical transformations),
and finally see how all such transformations — including time evolution — can be
expressed in terms of Poisson brackets.

Notice:

gives the probability that the system is found in Ω.
Any general (smooth) observable O(ξ) can then be constructed as a weighted
combination of such elementary ones:

O(ξ) = ∫
R

dλλχΩλ
(ξ), Ωλ = {ξ ∈ P ∣ O(ξ) = λ}.

Conceptually, each χΩλ
 picks out the phase-space region where O takes a

specific value λ, and O(ξ) aggregates these values with their weights λ.

When we use the terminology transformation, it is actually always active,
namley it's an map from a space to another; what many refer as "passive
transformation" should actually be called "re-parameterization of space".
Despite that transformation refers to general map from a space to another, in
physical context, physicists often use the word "transfomation" for "invertible, and
even structure-preserving" transformation, namely an isomorphism; and
sometimes we use "transformation" for automorphism
However, in this set of notes, we shall always (at least try to) adapt the
rigourous terminology.



Word Mathematical meaning Physicist’s typical usage
Transformation Any map f : X → Y , not 

necessarily invertible or 
structure-preserving

Usually means an invertible, 
structure-preserving map (an 
automorphism)

Automorphism A structure-preserving  
bijection $f: X \to X $

Rarely used explicitly; its 
meaning is implied when we 
say “transformation”

Isomorphism A structure-preserving 
bijection f : X → Y  between 
possibly different objects

Physicists often just call this a 
“transformation between 
equivalent descriptions”

(1) Phase-Space Transformations: Physical Meaning

An (active) phase-space transformation is a smooth map

Φ : P → P, ξ ↦ η = Φ(ξ),

that moves each phase-space point (the physical state) to another one.

(For reference: a passive coordinate change (q, p) ↦ (Q,P) merely relabels points of
P. It is mathematically compatible with the same symplectic structure but does not
correspond to a physical motion.)

(2) Canonical Transformations: (Structure-Preserving)
Automorphisms of phase space

Notice: When we use the word "automorphism", it means the map from a space
to itself that is structure-preserving and invertible, we explicitly wite these
conditions only to enphasize how canonical transformations distinguish from
general phase-space trabsformations.

Among all maps Φ : P → P, the physically admissible ones are those that preserve
the symplectic structure (of the phase space manifold) characterized by the

Physically, Φ represents a change of the system’s state:
the representative point moves along some curve in P.
The time evolution of a closed system is the most fundamental example of such
a transformation.



2n × 2n matrix

E = ( ).

Let J = ∂Φ
∂ξ  be the Jacobian of Φ. Then Φ is canonical if and only if

J⊤
EJ = E.

0 1n

−1n 0

Later we will see that such transformation ensures that the fundamental relations
between coordinates and momenta

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij

are invariant after canonical transformations
One can show that canonical transformations preserve phase-space volume
(Liouville’s theorem) and the form of Hamilton’s equations.

Notice not all diffeomorphism(automorphism on manifold) preserve volume:
A volume on an n-dimensional manifold M is specified by a nowhere-
vanishing top form (volume form) Ω ∈ Ωn(M). The volume of a region
U ⊂ M is

Vol(U) = ∫
U

Ω

A diffeomorphism f : M → M is volume-preserving if

f ∗Ω = Ω.

In local coordinates, this reduces to the Jacobian condition
det( ∂f

∂x ) = 1 with respect to the density underlying Ω.

On a symplectic manifold (P,ω) of dimension 2n, the Liouville
volume form is

ΩL ≡
1

n!
ωn = dq1 ∧ dp1 ∧ ⋯ ∧ dqn ∧ dpn.

A canonical (symplectic) transformation Φ : P → P is defined by

Φ∗ω = ω.



(3) Infinitesimal canonical transformations and the rise of the
Poisson Bracket

We now ask: how do canonical transformations arise continuously, and what
algebraic structure encodes their infinitesimal form?

(a) Continuous family of canonical transformations
Consider a one-parameter family of canonical transformations

Taking the n-fold wedge,

Φ∗ΩL = Φ∗( 1
n! ω

n) = 1
n! (Φ∗ω)n = 1

n! ω
n = ΩL

so every canonical transformation preserves the Liouville volume (this
is Liouville’s theorem).
Notice Not every diffeomorphism is volume-preserving. In general,
for f : M → M,

f ∗Ω = (det Jf) Ω (in local frames),

so unless det Jf ≡ 1, volumes change.
Volume-preserving is weaker than symplectic. If a diffeomorphism
preserves a given volume form Ω (equivalently det Jf = 1 in adapted
coordinates), it need not preserve the symplectic form:

f ∗ΩL = ΩL ⇒ f ∗ω = ω

In contrast, symplectic ⇒ volume-preserving:

Φ∗ω = ω ⇒ Φ∗ΩL = ΩL.

/

In canonical coordinates ξ = (q, p), the symplectic condition can be
written as a Jacobian constraint

J⊤
EJ = E, E = ( )

which in particular implies det J = 1 (hence Liouville preservation), but
is strictly stronger than det J = 1.

0 1n

−1n 0

They form a group under composition: if Φ1 and Φ2 are canonical, so is Φ2∘Φ1.



Φτ : P → P, Φ0 = id,

that moves each point ξ ∈ P smoothly along a curve. For instance, for a point ξ0, this
family of canonical transfomations moves it to a curve, points on the curve can then
be parameterized by τ:

ξ0(τ) = Φτ(ξ0)

The velocity field describing this motion is

X(ξ) =
dξ

dτ τ=0
.

(We call this a field because it's a function of phase-space points).
Since every Φτ  is canonical, it preserves the symplectic matrix E:

J ⊤
τ EJτ = E, where Jτ =

∂Φτ

∂ξ
.

Differentiating this relation at τ = 0 (where J0 = 1) gives the infinitesimal canonical
condition in terms of velocity field derivatives:

(∂X)⊤
E + E(∂X) = 0, ∂X =

∂X

∂ξ
.

(b) Existence of a generating function
The above condition is a constraint for a family of transformations to be
canonical, the constraint is expressed in terms of velocity field; and conversely it
can be viewed as a constraint for velocity field X itself to be "allowed".
Essentially, it states that X is a Hamiltonian vector field, i.e. it preserves the
symplectic form to first order. A fundamental result from symplectic geometry says
that such a vector field can always be expressed as

X(ξ) = E ∇ξG(ξ),

for some scalar function G : P → R, called the generator (or Hamiltonian function) of
the transformation.
Thus, every infinitesimal canonical transformation is generated by a single scalar
function G.

(c) Change of an observable along the flow
(We shall first clarify: By saying "change of an observable" it does not mean we are
changing the function O itself — the observable remains the same rule O(ξ); What

∣



changes is the value of O when evaluated on the transformed state.)
Let O(ξ) be any observable (a smooth function on P).
As the phase-space point moves according to the vector field X, O changes as

dO

dτ
= ∇ξO ⋅

dξ

dτ
= ∇ξO ⋅ X = ∇ξO ⋅ (E ∇ξG) = (∇ξO)⊤

E ∇ξG.

We now define this bilinear operation between O and G as the Poisson
bracket:$$\boxed{
{O, G}
= (\nabla\xi O)^\top \mathbf{E}, \nabla\xi G
= \sum_{i=1}^n
\left(
\frac{\partial O}{\partial q_i}\frac{\partial G}{\partial p_i}

(e) Physical interpretation

\frac{\partial O}{\partial p_i}\frac{\partial G}{\partial q_i}
\right).
}

Hencetheinfinitesimalchangeofanyobservableunderacanonicalflowgeneratedby$G$is

\frac{dO}{d\tau} = {O, G}.$$
(d) Logical emergence of the Poisson bracket

1. Start with canonical transformations that preserve the symplectic form
(J⊤

EJ = E).
2. Differentiate to obtain the condition for infinitesimal flows

((∂X)⊤E + E(∂X) = 0), this is the constraint for "physically allowed flows in
phase space"

3. Solve this condition: the general solution is X = E∇G , meaning that "for every
physically allowed flow in phase space, there is a generator associated"

4. Compute how any observable's evaluation on an initial state changes under this
flow: dO

dτ
= (∇O)⊤

E∇G.
5. Define this expression as {O,G} — the Poisson bracket.

Thus, the Poisson bracket is not postulated but arises inevitably as the unique
bilinear operation that encodes the infinitesimal canonical flow on phase space.



(4) Poisson Bracket: Definition and Structure

For two observables O1(ξ) and O2(ξ),
the Poisson bracket is defined as

{O1,O2} =
n

∑
j=1

(
∂O1

∂qj

∂O2

∂pj
−

∂O1

∂pj

∂O2

∂qj
) = (∇ξO1)⊤

E∇ξO2.

Properties:

The set of smooth observables with this bracket forms a Lie algebra, and the
corresponding canonical flows are the Lie group actions generated by it.

Refer to Lecture 1S for a short reminder of topological groups, Lie groups and Lie
algebra.

(5) Fundamental Poisson Brackets and Canonical Variables

Viewing qi and pi themselves as observables gives the fundamental brackets

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij.

The generator G(ξ) defines a small canonical motion of the system.
The quantity {O,G} measures how the observable O's evaluation on a given
initial state changes when the state moves infinitesimally along the flow
generated by G.
When the generator G is the Hamiltonian H, this motion becomes real time
evolution:

Ȯ = {O,H}.

Hence, the Poisson bracket represents the infinitesimal generator of physical
motion in phase space — it is the algebraic shadow of the underlying symplectic
geometry.

Antisymmetry: {O1,O2} = −{O2,O1}.
Leibniz rule: {O1O2,O3} = O1{O2,O3} + O2{O1,O3}.
Jacobi identity: {O1, {O2,O3}} + cyclic = 0.



A new coordinate system (Qi,Pi) on P is canonical if it satisfies the same relations:

{Qi,Qj} = 0, {Pi,Pj} = 0, {Qi,Pj} = δij.

This provides an intrinsic criterion for identifying canonical coordinates.

(6) Hamiltonian Flow and Dynamics Generated by an Observable

Each observable G(ξ) defines a Hamiltonian vector field

XG = E ∇ξG,

which generates a one-parameter family of canonical transformations ΦG
τ  satisfying

dξ

dτ
= XG(ξ).

In coordinates,

q̇i =
∂G

∂pi
, ṗi = −

∂G

∂qi
.

For any observable O(ξ),

dO

dτ
= {O,G}

Hence, the Poisson bracket encodes the infinitesimal change of any quantity
under the canonical flow generated by G.

When G = H (the Hamiltonian),
this becomes the equation of motion:

Ȯ = {O,H},

and in particular,

q̇i = {qi,H} =
∂H

∂pi
, ṗi = {pi,H} = −

∂H

∂qi
.

The integral curves ξ(τ) form a one-parameter Abelian group
of canonical transformations:



ΦG
0 = id, ΦG

τ1+τ2
= ΦG

τ1
∘ΦG

τ2
, (ΦG

τ )−1 = ΦG
−τ .

Since ∇ξ ⋅XG = 0, each ΦG
τ  preserves phase-space volume (Liouville’s theorem).

Time Evolution and Liouville Dynamics in Classical
Mechanics

Having established that infinitesimal canonical transformations are generated by the
Poisson bracket, we now systematically apply this structure to describe time
evolution — the continuous motion of a system along the canonical flow generated
by the Hamiltonian function H(ξ).

(1) Time Evolution as a Canonical Flow

The Hamiltonian flow ΦH
t  generated by H determines how every phase-space point

moves in time:

dξ

dt
= XH(ξ) = E ∇ξH(ξ)

Formally, this defines a one-parameter group of canonical transformations

ΦH
t : ξ0 ↦ ξt, ΦH

t+s = ΦH
t ∘ ΦH

s , ΦH
0 = id.

Time evolution thus acts as a canonical automorphism of the phase space.

(2) Evolution of Mixed States (Probability Distributions)

Let ρt(ξ) be the probability density on phase space at time t. Classical causality
demands that the probability of being found in a given region
evolves consistently with the deterministic flow of states.
Formally:

ρt(ξ) = ρ0(ΦH
−t(ξ)),

meaning that the probability of "being at ξ at time t
equals the probability that ”the system was initially at the point
such that evolves into ξ after time t'.



Differentiating with respect to time:

dρt(ξ)

dt
= −(∇ξρt)⋅

dξ

dt
= −∇ξρt ⋅ (E ∇ξH) = −{ρt,H}.

Hence, the Liouville equation:

This expresses the conservation of probability density along the Hamiltonian flow.

(3) Conservation of Total Probability (Liouville’s Theorem)

Integrating over the whole phase space,

d

dt
∫ dξ ρt(ξ) = −∫ dξ∇ξ ⋅ (ρtXH) = −∫ dξ (∇ξρt)⋅XH − ∫ dξ ρt(∇ξ ⋅ XH).

Since ∇ξ ⋅ XH = 0

(the Hamiltonian flow is volume-preserving), both terms vanish,
so the total probability is conserved:

d

dt
∫ dξ ρt(ξ) = 0.

(4) Liouville Operator and Formal Solution

The Liouville equation can be written in operator form:

dρt

dt
= LHρt, LH( ⋅ ) := {H, ⋅ },

where LH  is called the Liouville operator
or the Lie derivative along the Hamiltonian flow.

The formal solution is:

ρt = e tLHρ0.

This describes how any initial probability distribution is transported
along the trajectories of the Hamiltonian vector field.

dρt

dt
= −{ρt,H} or equivalently ∂tρt = {H, ρt}.



(5) Time Evolution of Observables

The expectation value of an observable O(ξ) at time t is

⟨O⟩t = ∫ dξ ρt(ξ)O(ξ) = ∫ dξ ρ0(ξ)O(ΦH
t (ξ)).

This expression shows that time evolution can equivalently be thought of
as acting either on states or on observables:

ρt = e tLHρ0 ⟺ Ot = e−tLHO0,

so that the expectation value remains invariant:

⟨Ot⟩ρ0
= ⟨O0⟩ρt .

Differentiating Ot gives the Heisenberg-type equation of motion:

dOt

dt
= {Ot,H},

which is the same relation obtained earlier for single trajectories.

(6) Summary: States vs. Observables

Viewpoint Object that 
evolves

Equation Interpretation

Schrödinger 
picture

Probability 
distribution ρt

ρ̇t = {H, ρt} The distribution is carried 
by the flow

Heisenberg 
picture

Observable Ot Ȯt = {Ot,H} The observable changes 
along the flow

Invariant 
quantity

Expectation value d
dt

⟨Ot⟩ρ0 = 0 Probabilistic consistency 
(Liouville theorem)

(7) Conceptual Summary

Time evolution in classical mechanics is a canonical transformation generated
by the Hamiltonian.



Hence, classical dynamics can be viewed equivalently as acting on states or on
observables — a duality that anticipates the Schrödinger and Heisenberg pictures
of quantum mechanics.

II. Quantum Mechanics

Hilbert Space H

The basic space of QM is a Hilbert space H:
a complex vector space equipped with an inner product ⟨ϕ|ψ⟩.

The basic mathematical structure underlying Quantum Mechanics is a Hilbert space
H.
Formally, a Hilbert space is a complex vector space equipped with a Hermitian
inner product

⟨⋅|⋅⟩ : H×H → C

such that satisfies the following properties for all |ϕ⟩, |ψ⟩, |χ⟩ ∈ H and all a, b ∈ C:

It's also good to know that the norm on H is defined by

∥ |ψ⟩ ∥ = √⟨ψ|ψ⟩,

The Liouville equation governs the evolution of mixed states (probability
densities).
Observables evolve according to the same Poisson-bracket law.
The expectation value of any observable is invariant under this joint evolution.

1. Linearity in the second argument:
⟨ϕ|aψ + bχ⟩ = a⟨ϕ|ψ⟩+ b⟨ϕ|χ⟩.

2. Conjugate symmetry:
⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗ and

3. Positive definiteness:
⟨ψ|ψ⟩ ≥ 0, with equality if and only if |ψ⟩ = 0.

4. (1+2 naturally lead to conjugate linearity in first argument, this is automatically
satisfied)



and H is complete with respect to this norm.

States

(1) Pure state represented as ray, a pure state as an equivalent
class

A pure state of a quantum system is represented by a ray in H —
that is, by an equivalence class of nonzero vectors

|ψ⟩ ∼ eiα|ψ⟩, α ∈ R

which define the same physical state.

(1') A pure state is often represented by a representative
(normalized) vector of the ray

In practice, one may use normalized vector |ψ⟩ of the ray it belongs to to represent a
pure state.

(2) Pure stated represented as rank-1 orthogonal projector Πψ

Equivalently, each pure state can be represented by a rank-1 orthogonal projector

Πψ =
|ψ⟩⟨ψ|

⟨ψ|ψ⟩
, |ψ⟩ ≠ 0.

In practice we work with normalized vectors ⟨ψ|ψ⟩ = 1, so that Πψ = |ψ⟩⟨ψ|.
The set of all pure states therefore corresponds to the complex projective Hilbert
space

P(H) = (H ∖ {0})/U(1),

where U(1) acts by global phase multiplication |ψ⟩↦ eiα|ψ⟩.

(3) Mixed state as probability distribution, represented by density
operator ρ



Like in classical mechanics, we may lack complete knowledge of the system’s state.
This epistemic uncertainty is represented by a mixed state (statistical ensemble)
described by a density operator ρ̂.

(4) Properties of the Density Operator

A valid density operator ρ̂ satisfies:

⟨ϕ|ρ̂|ϕ⟩ ≥ 0, ρ̂† = ρ̂, Tr ρ̂ = 1.

It can always be diagonalized:

ρ̂ = ∑
n

pn |n⟩⟨n|, pn ≥ 0, ∑
n

pn = 1,

where {|n⟩} are orthonormal eigenvectors.
Historically, ρ̂ is called the density matrix.

(5) All density operators form a convex set, with pure states as
extremal points

The operator ρ̂ is thus a compact, positive semidefinite, trace-one operator on H:

ρ̂ ≥ 0, Tr ρ̂ = 1.

The space of all such operators,

SQM = { ρ̂ ∈ B(H) ∣ ρ̂ ≥ 0,  Trρ̂ = 1 }

Let be a probability distribution over normalized vectors on H, satisfying

ρ(|ψ⟩) ≥ 0, ∫
H

dψ ρ(|ψ⟩) = 1.

We associate to it the density operator

ρ̂ = ∫
H

dψ ρ(|ψ⟩) |ψ⟩⟨ψ|,

which acts on H and encodes the same statistical information.
For a discrete ensemble { |ψi⟩, pi }, this reduces to

ρ̂ = ∑
i

pi |ψi⟩⟨ψi|, pi ≥ 0, ∑
i

pi = 1.



forms a convex set:
if ρ̂1, ρ̂2 ∈ SQM and 0 ≤ p ≤ 1,
then pρ̂1 + (1 − p)ρ̂2 ∈ SQM.

Observable and Measurement

(1) Observables are Hermitian operators

An observable in QM is represented by a self-adjoint operator
Ô = Ô† acting on H, namely an Hermitian operator. i.e. an operator satisfying:

⟨ϕ, Âψ⟩ = ⟨Âϕ,ψ⟩, ∀ϕ,ψ ∈ D(Â),

(2) Thus, observables admit a spectral decomposition

Such operators have real eigenvalues and admit a spectral decomposition:

Ô = ∑
n

λn Πλn , Πλn = |λn⟩⟨λn|, ⟨λm|λn⟩ = δmn.

where each Πλn
 is an elementary yes/no observable, and any function of Ô is

defined spectrally:

f(Ô) = ∑
n

f(λn) Πλn
.

This spectral structure is the quantum analog of the decomposition of classical
observables into level sets on phase space.

(3) Probability of a measurement

When an observable Ô (a self-adjoint operator) is measured on a system in state , its
possible outcomes are the eigenvalues λn of Ô, and the probability of obtaining λn

Pure states are the extremal points of this set (they cannot be written as
nontrivial mixtures).
Mixed states are convex combinations of pure ones, representing statistical
mixtures rather than definite quantum states.



is given by the Born rule:

P(λn) = Tr(ρ̂Πλn), Πλn = |λn⟩⟨λn|.

For a pure state |ψ⟩, this reduce to

P(λn) = ⟨ψ|Πλn
|ψ⟩ = |⟨λn|ψ⟩|2

(4) Expectation value of an observable

The expectation value of Ô in state ρ̂ is then the statistical mean
of all possible measurement results:

⟨Ô⟩ρ̂ = ∑
n

λn P(λn) = ∑
n

λn Tr(ρ̂Πλn) = Tr(ρ̂ Ô). $$orapurestate, thisreducesto : $$⟨Ô⟩ψ

In classical mechanics this probability would be purely epistemic (reflecting
ignorance), but in QM, it reflects intrinsic uncertainty of measurement outcomes —
even for pure states.

Hilbert Space Transformations and Dynamics

Quantum mechanics, like classical mechanics, admits transformations acting on its
state space. However, here the state space is the Hilbert space H, and the relevant
structure to preserve is not the symplectic form but the inner product, which
encodes probability amplitudes.

(1) General Transformations of States

A general transformation of states is a linear map

|ψ⟩ ⟼  |ψ′⟩ = T̂ |ψ⟩,

where T̂  is an operator acting on H.

In general, T̂  may not preserve the inner product:

⟨ψ′|ϕ′⟩ = ⟨ψ|T̂ †T̂ |ϕ⟩ ≠ ⟨ψ|ϕ⟩.

Such transformations distort probability amplitudes and thus are not physically
admissible.



(2) Structure-Preserving Transformations: Unitary and Antiunitary
Maps

The physically admissible transformations are those preserving inner products:

⟨ψ′|ϕ′⟩ = ⟨ψ|ϕ⟩,

which implies

T̂ †T̂ = 𝟙.

These are unitary transformations.
(If the map is antilinear and still preserves the norm, it is antiunitary;
such maps appear, for instance, in time-reversal symmetry, but we focus on the
unitary case.)

Unitary transformations preserve:

(2') Thus, unitary transformations are the quantum analog of
canonical transformations in classical mechanics

They preserve the fundamental structure of the theory — probability amplitudes
instead of phase-space volume.

(3) Infinitesimal Unitary Transformations: generator of a
transformation and the rise of commutator

A one-parameter family of unitary transformations Ûτ

forms a continuous group:

Û †
τ Ûτ = 𝟙, Ûτ1+τ2 = Ûτ1Ûτ2 .

Any such family can be written as an exponential of a Hermitian generator Ĝ:

Ûτ = e− i
ℏ
τĜ, Ĝ† = Ĝ

The norm of state vectors, hence normalization of probabilities;
The inner product structure, hence all transition probabilities |⟨ϕ|ψ⟩|2.



Differentiating at τ = 0 gives the infinitesimal form:

d

dτ
|ψτ⟩ = −

i

ℏ
Ĝ|ψτ⟩.

Here Ĝ plays the same role as the generating function in classical mechanics:
it defines a flow on the Hilbert space that preserves the underlying structure.

Now recall our workflow of introducing the concept of Poisson braket in CM (3)
Infinitesimal canonical transformations and the rise of the Poisson Bracket, where we
followed the logic chain:

(c). Evolve of evaluation of an observable
Let Ûτ = e− i

ℏ τĜ act on an initial state |ψ⟩.
The evolved state is:

|ψτ⟩ = Ûτ |ψ⟩.

The expectation value of an observable Ô in the evolved state is

⟨Ô⟩τ = ⟨ψτ |Ô|ψτ⟩ = ⟨ψ|Û †
τ Ô Ûτ |ψ⟩.

Differentiating with respect to τ gives:

d

dτ
⟨Ô⟩τ =

i

ℏ
⟨ψ|[Ĝ, Ôτ ]|ψ⟩, Ôτ = Û †

τ ÔÛτ .

1. Start with canonical transformations that preserve the symplectic form
(J⊤

EJ = E).
2. Differentiate to obtain the condition for infinitesimal flows

((∂X)⊤
E + E(∂X) = 0), this is the constraint for "physically allowed flows in

phase space"
3. Solve this condition: the general solution is X = E∇G , meaning that "for every

physically allowed flow in phase space, there is a generator associated"
4. Compute how any observable's evaluation on an initial state changes under this

flow: dO
dτ

= (∇O)⊤
E∇G.

5. Define this expression as {O,G} — the Poisson bracket.
Analogically, since we have we shall continue from the 4th step: compute how
any observable's evaluation on an initial state changes under the flow
induced by an infinitesimal unitary transformation.



Hence, the rate of change of an observable’s expectation value under a
transformation generated by Ĝ is determined by the commutator [Ĝ, Ô].

(4) Definition of the Quantum Poisson Bracket (Commutator)

By analogy with the classical expression

Ȯ = {O,G},

we define the quantum Poisson bracket as

{Ô, Ĝ}QM =
1

iℏ
[Ô, Ĝ] =

1

iℏ
(ÔĜ − ĜÔ).

This identifies the commutator (up to the factor 1/iℏ)
as the quantum analog of the Poisson bracket.

It governs both:

Thus, at this stage, we can (at least) say:
If Ĝ generates a unitary flow, the corresponding evolution of the expectation value of
observables is:

(5) Active vs. Passive Interpretations of the Flow : Heisenberg
Picture

infinitesimal evolution of expectation values
this is from a straightforward analog with CM, in a sense "evaluation of
anobservable on a system with given initial (pure) state" corresponds to
"measurement (expectation value) of an observable on a system with given
initial (pure) state", and thus their evolution

infinitesimal transformations of observables
this is not a direct analog from CM, this only make sense when we
introduce the so called Heisenberg picture

d ⟨Ô⟩

dτ
=

i

ℏ
⟨[Ĝ, Ô]⟩



In the previous discussion, the state |ψ⟩ evolved under a unitary flow generated by Ĝ
:

|ψτ⟩ = Ûτ |ψ⟩, Ûτ = e−
i
ℏ Ĝτ .

This is called the active interpretation — the physical state itself moves in Hilbert
space, while observables remain fixed.

Alternatively, we can adopt a passive interpretation, where the state is kept fixed,
and instead we view the observables as evolving according to

Ôτ = Û †
τ Ô Ûτ .

This defines the Heisenberg picture of quantum mechanics.

Both descriptions are physically equivalent, since they yield identical expectation
values:

⟨ψτ |Ô|ψτ⟩ = ⟨ψ|Ôτ |ψ⟩.

This equivalence mirrors the classical duality between two ways of describing
canonical transformations:

Differentiating Ôτ = Û
†
τ ÔÛτ  with respect to τ gives

which is the Heisenberg equation of motion.

Thus, the commutator 1
iℏ [⋅, ⋅] governs

Active viewpoint: points in phase space (the states) move under the
Hamiltonian flow Φt.
Passive viewpoint: the coordinate functions (observables) are transformed
while the point is held fixed.
Thus, the Schrödinger and Heisenberg pictures in quantum mechanics
correspond precisely to these two classical perspectives on phase-space
evolution.

dÔτ

dτ
=

1

iℏ
[Ôτ , Ĝ]



(6) Canonical Commutation Relations as Structural Consequences

From the viewpoint of infinitesimal unitary transformations,
the canonical commutation relations

[q̂i, p̂j] = iℏ δij, [q̂i, q̂j] = [p̂i, p̂j] = 0,

express how position and momentum operators
transform under each other’s generated flows:

Hence, the CCR are not arbitrary postulates: they encode the infinitesimal
structure of unitary flows that preserve the Hilbert-space inner product,
just as the Poisson bracket structure encodes the infinitesimal canonical flows
that preserve the symplectic form in classical mechanics.

Generators, Commutation, and Quantum Dynamics

Once the structure of allowed transformations is understood, we can describe how
dynamics arises as a continuous unitary flow generated by a particular observable
— the Hamiltonian.

(1) Generator of Time Evolution: the Hamiltonian Operator

infinitesimal transformations of observables in the Heisenberg picture — the
exact quantum analog of the Poisson bracket { ⋅ , ⋅ } in classical mechanics.
in addition to "infinitesimal evolution of expectation values in Schrodinger's
picture" which we have discussed in last subsection.

The flow generated by p̂j shifts q̂i:

dq̂i

dτ
=

i

ℏ
[p̂j, q̂i] = δij.

The flow generated by q̂i shifts p̂j oppositely:

dp̂j

dτ
=

i

ℏ
[q̂i, p̂j] = −δij.



Physical time evolution is a unitary flow generated by the Hamiltonian Ĥ:

iℏ
d

dt
|ψt⟩ = Ĥ |ψt⟩.

Its formal solution is

|ψt⟩ = ÛH
t |ψ0⟩, ÛH

t = e− i
ℏ
tĤ .

For non-relativistic particles,

Ĥ =
p̂2

2m
+ V (x̂).

(2) Liouville–von Neumann Equation for Mixed States

For a mixed state ρ̂, causality implies that probabilities evolve consistently under the
same unitary flow:

ρ̂t = ÛH
t ρ̂0 (ÛH

t )†.

Differentiating gives the Liouville–von Neumann equation:

dρ̂t

dt
= −

i

ℏ
[Ĥ, ρ̂t] ≡ LH ρ̂t

The super-operator LH = − i
ℏ [Ĥ, ⋅ ]

is the quantum analog of the Liouville operator in classical mechanics.

(3) Stationary States

A state ρ̂stat is stationary if it commutes with Ĥ:

[ρ̂stat, Ĥ] = 0

Such states are mixtures of energy eigenstates ΠEn , and evolve trivially in time:

ρ̂stat(t) = ρ̂stat.



(4) Time Evolution of Observables: Heisenberg Picture

Because expectation values ⟨Ô⟩t = Tr(ρ̂tÔ) must remain invariant, time evolution
can equivalently be represented as acting on observables:

Ôt = (ÛH
t )† Ô ÛH

t ,

so that

⟨Ô⟩t = Tr(ρ̂0 Ôt) = Tr(ρ̂t Ô).

Differentiating gives the Heisenberg equation of motion:

dÔt

dt
=

i

ℏ
[Ĥ, Ôt].

This is the direct quantum counterpart of

dO

dt
= {O,H}

in classical mechanics.

III. Classical–Quantum Parallel

Concept / Structure / 
Dynamics

Classical Mechanics Quantum Mechanics

State space Phase space P Hilbert space H

Pure state Point ξ0 or ρ(ξ) = δ(ξ − ξ0) Ray ψ⟩ or projector ψ⟩⟨ψ

Mixed state Probability density ρ(ξ) Density operator (matrix) 
ρ̂

Observable Real function O(ξ) on P Hermitian operator Ô on 
H

Expectation value ⟨O⟩ = ∫ dξ ρ(ξ)O(ξ) ⟨Ô⟩ = Tr(ρ̂ Ô)

Elementary 
observable

Indicator function of region in 
P

Projector Π = ϕ⟩⟨ϕ 
(yes/no proposition)

Transformation of 
states

Canonical transformation 
ξ ↦ η(ξ)

Unitary transformation 
ψ⟩ ↦ Ûψ⟩



Concept / Structure / 
Dynamics

Classical Mechanics Quantum Mechanics

Structure preserved Symplectic form ω = dq ∧ dp 
(volume and Poisson 
structure)

Inner product ⟨ϕψ⟩ 
(probabilities)

Infinitesimal 
generator

Function G(q, p) generating 
Hamiltonian vector field 
XG = E∇G

Hermitian operator Ĝ 
generating unitary flow 
Ûτ = e−iτĜ/ℏ

Infinitesimal 
structure (bracket)

Poisson bracket 
{A,B} = (∇A)⊤E∇B

Commutator 1
iℏ [Â, B̂]

Canonical pair (qi, pj) with {qi, pj} = δij (q̂i, p̂j) with [q̂i, p̂j] = iℏ δij

Transformation of 
observables

O ↦ O′ = O ∘ η−1 (pullback) Ô ↦ Ô′ = Û †ÔÛ

Evolution of state ρ̇ = {H, ρ}  (Liouville 
equation)

˙̂ρ = − i
ℏ [Ĥ, ρ̂]  (von 

Neumann equation)

Evolution of 
observable

Ȯ = {O,H}  (Hamilton’s 
equations)

˙̂
O = i

ℏ [Ĥ, Ô]  
(Heisenberg equations)

Generator of motion Hamiltonian function H(q, p) Hamiltonian operator Ĥ

Flow on state space Hamiltonian flow ΦH
t  

(symplectic, volume-
preserving)

Unitary flow ÛH
t = e−itĤ/ℏ

 (inner-product 
preserving)

Stationary state / 
invariant distribution

{H, ρstat} = 0 [Ĥ, ρ̂stat] = 0

Geometric structure 
preserved by 
dynamics

Symplectic form ω, phase-
space volume (Liouville’s 
theorem)

Inner product ⟨ψϕ⟩ 
(unitarity)

Physical 
interpretation of ℏ

— Quantization scale of 
phase-space area, 
[qi, pj] = iℏ

Classical limit (ℏ → 0

)
— 1

iℏ [Â, B̂] → {A,B}

In this unified view:



The formal structure of QM mirrors that of classical mechanics:
both are built on

However:

3. Example: Harmonic Oscillator (Part 2)
4. Measurement in QM (Part2)

Symplectic ↔ Unitary
captures the structure-preserving transformations in both theories.
Poisson bracket ↔ Commutator
provides the algebraic skeleton of dynamics.
Hamiltonian flow ↔ Unitary evolution
connects the generator to physical time evolution.

a convex set of states,
observables forming a real vector space with a bilinear bracket,
dynamics generated by a distinguished element (the Hamiltonian).

In CM, uncertainty is epistemic (lack of knowledge about ξ);
In QM, uncertainty is intrinsic, arising from non-commutativity of observables.
Planck’s constant ℏ quantifies this deviation: as ℏ → 0, commutators reduce to
Poisson brackets and the quantum theory tends to its classical limit.


