Lecture 1S

A Quick Reminder of Elementary Hamiltonian
Mechanics

1. Phase Space

|. Phase Space P is a smooth 2n-dimensional Manifold

Phase space P
The basic object in classical mechanics (CM) is the phase space P.

P is a smooth manifold of even dimension d = 2n.

A point in phase space is
EecP

corresponds to a pure state of a physical system.
Thus, P represents the space of all possible pure states of a system.

Il. Phase Space P is a Simplectic Manifold

Beyond being a smooth 2n-dimensional manifold, the phase space P carries an
additional geometric structure: a symplectic form.

(1) Symplectic form field

A symplectic form on P is a smooth 2-form field
w € Q*(P)

that satisfies two conditions:

Closedness: dw =0

Non-degeneracy: For every ¢ € P and nonzero v € T¢P,
there exists some w € T¢P such that w(v, w) # 0.

In canonical local coordinates (g;, p;) on P, the standard expression is



dg; N dp;.
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(1') A smooth manifold equipped with a symplectic form field is
called a simplectic manifold

A pair (P,w), where P is a smooth manifold and w a symplectic form on it, is called a
symplectic manifold.

The symplectic form provides a coordinate-free way to encode the canonical
structure of phase space.

(2) Darboux's theorem and canonical coordinates

Darboux’s theorem states that given a symplectic manifold P, around every point
&o € P, there exists a local coordinate chart

(qla <+ 9Qqn,P1y--- 7pn)

such that

w= dq; N dp;.

n
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These local coordinates are called canonical coordinates (or Darboux
coordinates).

(2') Symplectic structure give rise to a canonical coordinates

In other words, given a symplectic manifold, we can always find a (local)
coordinate chart, such that the symplectic form field takes a simple coorinate form,
and we call such coordinates canonical coordinates.

Later we shall see:

The symplectic form is the coordinate-free essence of Hamiltonian geometry;
While canonical coordinates are local charts in which this structure takes its
simplest form.

2. States



In Hamiltonian mechanics, a state represents our knowledge (complete or
incomplete) about where the system lies in phase space.

Mathematically, a state is described by a distribution function on the phase space
P.

l. General State p
A general state (or statistical state) is a smooth, non-negative, normalized function
p: P — RZO,

satisfying

/ p(q,p) dppw = 1.
P

were du,, is the Liouville measure on P, defined from the symplectic form:

w/\n

d/.l/w — _'.
n.

p(q, p) represents the probability density of finding the system near point (g, p)
in phase space.

In canonical coordinates (q1,...,q,,p1,---,pP,), the Liouville measure takes the
coordinate expression

dpy, =dqi N -+ Ndgn Ndp1 A -+ A dpn.

Thus, the normalization condition becomes

/RZ p(Qap)dQIdQndpldpn: 1

Thus, p encodes both deterministic and statistical information about the system.

Il. Pure State

A pure state is an extremal case of p that represents complete knowledge of the
system’s position in phase space.



Mathematically, it is a Dirac distribution supported on a single point:

pe(q, p) = 0(q — qo) 6(p — po),

where & = (qo,po) € P is the phase-space point describing the system. In practice,
many abuse the notation of phase-space point &y to represent this distribution
directly.

Hence:

Pure states «— points in P (deterministic trajectories).

Mixed states < probability distributions on P (ensembles).

lll. Convex Geometry

The set of all normalized, non-negative distribution functions (which represent all
general states of system)

S:{pGCOO(P)‘pZO, /pd,uwzl}
forms a convex set.
By saying S is a convex set, we mean: if p1,p2 € Sand 0 < )\ <1, then
p=Ap1+(1—=X)py €S.
One can also prove that:

Pure states are the extreme points of this convex set:
they cannot be written as convex combinations of other states.

Mixed states are interior points: convex mixtures of pure states.

Quantum Mechanics Counterpart

This convex geometry of states in classical mechanics mirrors that of quantum
mechanics, where the set of density matrices also forms a convex set with pure
states as its extremal elements.



3. Observables

In Hamiltonian mechanics, an observable represents any measurable physical
quantity of a system — for example, position, momentum, energy, or angular
momentum.

Mathematically, observables are real-valued smooth functions on the phase space P.

l. Observable: Smooth Function on Phase Manifold
An observable is a smooth function

f:P—=R, feCe(P).
In canonical coordinates (g;, p;), this means

f:f(QIa'HaQTwpla"'apn)-

Each observable assigns to every pure state £ = (¢, p) a real number f(£) — the
value of that quantity when the system is in state &.

Il. Algebraic Structure of Observables and Poisson
Braket

The set C*°(P) of smooth observables carries two compatible algebraic structures:
Pointwise multiplication
(f,9) = (f9)(&) = f(£)g(&)-

Poisson bracket induced by the symplectic form w:
Given symplectic form field w, every smooth function f defines a Hamiltonian
vector field X by

Lx, w=df.
The Poisson bracket between two observables f and g is defined as
{fa g} - w(Xfa Xg)

In canonical coordinates, this becomes



\{f, g\} = \sum_{i=1} 'n \left( \frac{\partial f} {\partial q i} \frac{\partial
\frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}
\right)$$

(1) Symlectic structure naturally leads to Poisson braket for smooth
function on symplectic manifold

Given the symplectic form field w, every smooth function f € C*°(P) defines a unique
Hamiltonian vector field X ; through:

Lx,w=df.
The Poisson bracket of two observables f,g € C*°(P) is then defined by
{f,9} = w(Xy, Xy).
This definition uses only the symplectic structure and is therefore coordinate-free.
(2) Properties of the Poisson Bracket

The Poisson bracket endows C*(P) with the structure of a Poisson algebra,
satisfying:

Bilinearity
{af +bg, h} = a{f,h} + b{g,h},  a,beR.
Antisymmetry
{f,9y =—{9, f}
Jacobi identity
{£,{9,h}} + {9, {h, f}} + {h,{f,g}} = 0.
Leibniz rule (derivation property)

{f,gh} ={f,g}h + 9{f, h}.

These properties ensure that the Poisson bracket acts as a Lie bracket on
observables while remaining compatible with pointwise multiplication.
They are the classical analog of the commutator algebra in quantum mechanics.



4. Dynamics

Time evolution in Hamiltonian mechanics is generated by a distinguished observable
— the Hamiltonian function H : P — R, which represents the total energy of the
system.

The symplectic form w allows H to define a vector field on P, whose integral curves
describe the motion of the system in phase space.

. Hamiltonian Vector Field

(1) Geometric definition

Given a Hamiltonian function H € C'*(P), the associated Hamiltonian vector field
Xu € X(P)

is defined implicitly by
Lxyw=dH.

tx, denotes interior contraction of w with Xg.
Non-degeneracy of w ensures the existence and uniqueness of X .

(2) Canonical-coordinatewise

In canonical coordinates (g;, p;) with

w= Zd%’ A dp;,

the Hamiltonian vector field can be explicitly defined as: $$XH
= \sum{i=1}*n

\left(

\frac{\partial H}{\partial p_i}\frac{\partial}{\partial q_i}

\frac{\partial H{\partial q_i}\frac{\partial}{\partial p_i}
\right).$$



Il. Hamilton’s Equations
Let a trajectory in phase space be a smooth curve
&(t) = (a(t),p(¢)) € P.
Time evolution is determined by the Hamiltonian function
H:P— R,
which specifies the total energy of the system.

(1) Postulate: physical motion of system satisfies the condition " is
an integral curve of the Hamiltonian vector field Xy:"

The motion of the system is described by the condition that £(¢) is an integral curve
of the Hamiltonian vector field X z:

&(t) = Xu(£(t))-

This means that, at every instant, the velocity vector of the trajectory in phase space
equals the value of Xy at that point.

(2) Result: Halmilton's equation

In principle, we may call the equation £(t) = X (£(t)). above the Hamilton's equation
of motion; but in practice, since we work on canonical coordinates (g;, p;) to
descrive the state of system: recalling that

" (OH 0 O0H 0
XH_Z(aPi 5%’_3% 5pi>’

i=1

this yields the familiar canonical Hamilton’s equations of motion:

oH . oH
~ Opi’ Pi= Oqi

di
(3) Define: Hamiltonian Flow and Canonical Transformations

Let &, : P — P denote the Hamiltonian flow generated by X g, defined by

d

E‘I’t(ﬁo) = Xpu(®¢(%)), Py = id.



We can show that each ®, is a diffeomorphism of P that preserves the symplectic
form:

Piw=w

Such transformations are called canonical transformations or
symplectomorphisms.

Hence, time evolution in Hamiltonian mechanics is realized as a one-parameter
family of canonical transformations of phase space.

(4) Poisson Bracket Form of Hamilton’s Equations

Let f(q,p) be any smooth observable on P.
Its total time derivative along the trajectory £(¢) is

Z 0f of of .
a (2
Substituting Hamilton’s equations gives

ﬁzz<8f 8H_ of O0H
0q; Op; Op; 0q;

)-t.m

Thus, Hamilton’s equations can be equivalently expressed as the Poisson-bracket
evolution law:

df _{f7H}

(5) Recover the canonical Hamilton's equations from Poisson
Braket Hamilton's equation

In particular, for the canonical coordinates themselves:
qgi = {qi,H}, pz = {puH}

This shows that the Poisson bracket is not merely an algebraic structure — it
encodes the dynamical generator of time evolution.



lll. Liouville Equation and Phase Flow

When the system’s state is a statistical distribution p(q,p,t) on phase space, time
evolution is governed by the Liouville equation.

If we imagine following the flow (governed by the Hamiltonian) of phase-space points
— like watching dye particles move in an incompressible fluid — the probability
density “attached” to each moving point doesn’t change:

dp Op
— =0 == —+X =0
dt ar ~XulP)

In canonical coordinates, using the expression for Xz, this becomes$$\frac{\partial
\rho}{\partial t}

= -\sum_{i=1}"n

\left(

\frac{\partial H}{\partial p_i}\frac{\partial \rho}{\partial q_i}

\frac{\partial H}{\partial q_i}\frac{\partial \rho}{\partial p_i}
\right)

orequivalently,
\frac{\partial \rho}{\partial t} = {H,\rho}.$$

Thus, the Liouville equation expresses the conservation of probability density
along the Hamiltonian flow.

The Hamiltonian flow preserves both the symplectic form and the Liouville measure:
Pw=w,  P/du = du,

ensuring that the volume of any region in phase space remains invariant under time
evolution — this is Liouville’s theorem.



