

Lecture 1X Lie Group and Lie Algebra

Topological Group, Lie Group and Lie Algebra, with Applications in Quantum Physics

This is just a **translation** of another note [000 从拓扑群到李群](#) from Group Theory. I do made some **modifications** to fit it in Quantum Theory context. This note assumes reader is completely ignorant of Lie algebras

We first clarify our **conventions**:

- Hilbert-space inner product is linear in the **second** slot.
- Spacetime metric: choose $\eta_{\mu\nu} = \text{diag}(-, +, +, +)$ unless stated.
- Commutator: $[A, B] = AB - BA$.
- In physics, Lie-algebra generators are usually taken **Hermitian**; the mathematician's anti-Hermitian basis differs by factors of i .

1. From Topological Groups to Lie Groups

I. Groups

A **group** (G, \cdot) is a set equipped with a binary operation satisfying:

1. **Closure:** For any $g, h \in G$, $gh \in G$.
2. **Associativity:** $(gh)k = g(hk)$.
3. **Identity:** There exists $e \in G$ such that $ge = eg = g$.
4. **Inverse:** For every $g \in G$, there exists g^{-1} with $gg^{-1} = g^{-1}g = e$.

A group may be discrete, finite, or infinite. Its structure is purely algebraic — no geometry or topology is assumed yet.

II. Topological Groups

Topological Space

(1) Definition

Let X be a nonempty set.

If there is a specified collection of subsets $\mathcal{T} \subset \mathcal{P}(X)$ (where $\mathcal{P}(X)$ is the power set of X) satisfying the following three axioms, then the pair (X, \mathcal{T}) is called a **topological space**, \mathcal{T} is called a **topology** on X , and its elements are called **open (sub)set** of X :

1. The empty set and the whole set are open:

$$\emptyset \in \mathcal{T}, \quad X \in \mathcal{T}.$$

2. Arbitrary unions of open sets are open:

If $\{U_i\}_{i \in I} \subset \mathcal{T}$, then

$$\bigcup_{i \in I} U_i \in \mathcal{T}.$$

3. Finite intersections of open sets are open:

If $U_1, \dots, U_n \in \mathcal{T}$, then

$$\bigcap_{j=1}^n U_j \in \mathcal{T}.$$

Concepts such as *continuity*, *convergence*, *connectedness*, and *compactness* are all defined relative to the chosen topology \mathcal{T} .

(2) Continuity of Maps between Topological Spaces

A map $f : X \rightarrow Y$ between two topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) is said to be **continuous** if:

for every open set $U \in \mathcal{T}_Y$, its **preimage** $f^{-1}(U)$ is open in X :

$$U \in \mathcal{T}_Y \quad f^{-1}(U) \in \mathcal{T}_X.$$

From a categorical perspective, continuous maps are those that *preserve the topological structure*, just as group **homomorphisms** preserve group structure and linear maps preserve linear structure.

(2') Homomorphisms between topological spaces = continuous maps

Formally, let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces.

A map

$$f : X \rightarrow Y$$

is called a **topological homomorphism** (or simply a **continuous map**) if it satisfies:

$$\in \mathcal{T}_Y \quad f^{-1}(\mathcal{U}) \in \mathcal{T}_X.$$

That is, the preimage of every open set in Y is open in X .

In category-theoretic language:

- Objects: topological spaces (X, \mathcal{T}_X)
- Morphisms (homomorphisms): continuous maps $f : X \rightarrow Y$

(3) Homeomorphism = bijection + continuous + inversely continuous

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces.

A map $f : X \rightarrow Y$ is called a **homeomorphism** if:

1. f is a **bijection** (one-to-one and onto).
2. f is **continuous**.
3. The inverse map $f^{-1} : Y \rightarrow X$ is also **continuous**.

If such an f exists, we say that X and Y are **homeomorphic**, meaning they are *topologically equivalent*.

Topological Groups

A **topological group** is a mathematical structure that combines two compatible ingredients:

1. **Group structure**: it allows algebraic operations — multiplication and inversion.
2. **Topological structure**: it allows notions of continuity, limits, and convergence.

(1) Formal definition

Formally, a topological group is a group G that is also a topological space, such that:

- The **multiplication map**

$$\mu : G \times G \rightarrow G, \quad (g, h) \mapsto gh$$

is **continuous** with respect to the product topology on $G \times G$.

- The **inversion map**

$$\iota : G \rightarrow G, \quad g \mapsto g^{-1}$$

is also **continuous**.

These two conditions ensure that the algebraic operations of the group are *compatible* with the topology — small changes in the elements of G lead to small changes in their product and inverse.

(2) Intuitive meaning

A topological group provides a framework where one can discuss **continuous deformations** of group elements. This means we can talk about *paths*, *connected components*, and *limits* inside a group while preserving its algebraic structure. In physics, this is crucial for describing **continuous symmetries**, where group parameters can vary smoothly.

Typical examples

1. Additive group of real numbers:

$(\mathbb{R}, +)$ is a topological group with the usual topology; both addition and negation are continuous.

2. The circle group:

$$S^1 = \{e^{i\theta} \mid \theta \in [0, 2\pi)\},$$

with multiplication of complex numbers. It represents the simplest compact Lie group.

3. General linear group:

$$GL(n, \mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid \det A \neq 0\},$$

endowed with the subspace topology inherited from \mathbb{R}^{n^2} .

Matrix multiplication and inversion are continuous functions of the entries.

4. Discrete groups:

Any group endowed with the discrete topology is trivially a topological group, since all maps are continuous.

III. Motivation for Lie Groups

Topological groups can describe continuity, but not differentiability.

In physics, we need *smooth* transformations — infinitesimal symmetries that can be generated by derivatives.

This leads to **Lie groups**, which possess a differentiable structure compatible with the group operation.

IV. Lie Group

A **Lie group** is a mathematical structure that unifies **smooth geometry** and **group algebra**.

It is a group G that is also a **smooth manifold**, such that the group operations (product, inversion) are **smooth maps** in the sense of differential geometry.

(1) Formal definition

A **Lie group** is a pair (G, \mathcal{A}) , where G is a set and \mathcal{A} is a **smooth manifold** structure on G , satisfying:

- The **multiplication map**

$$\mu : G \times G \rightarrow G, \quad (g, h) \mapsto gh$$

is smooth (C^∞) with respect to the product manifold structure on $G \times G$.

- The **inversion map**

$$\iota : G \rightarrow G, \quad g \mapsto g^{-1}$$

is also smooth.

In other words, both operations of **composing** and **inverting** of group elements are *differentiable operations*. These two smoothness conditions ensure that the algebraic

and differential structures are **compatible**.

Notice: we require that the manifold to be **smooth** instead of only **topological** to clarify that there is a compatible **differential structure** defined on this space.

(2) Direct consequence as a smooth manifold

Hence, one can study both **global symmetries** (through the group structure) and **local/infinitesimal symmetries** (through calculus on the manifold).

Every path through the identity element of G corresponds to a **continuous symmetry transformation**; taking derivatives along such paths gives rise to **infinitesimal generators**, forming the **Lie algebra** of G .

(3) Examples

1. Abelian Lie group:

$(\mathbb{R}^n, +)$ — addition and inversion are smooth linear maps.

2. Matrix Lie groups:

Subgroups of $GL(n, \mathbb{R})$ or $GL(n, \mathbb{C})$ defined by smooth constraints, e.g.

- $O(n) = \{A \in GL(n, \mathbb{R}) \mid A^T A = I\}$
- $SO(3)$ — rotation group in 3D
- $SU(2)$ — special unitary group of degree 2, double cover of $SO(3)$

3. Circle group:

$$S^1 = \{e^{i\theta} \mid \theta \in [0, 2\pi)\}$$

with complex multiplication, a compact 1D Lie group.

4. Discrete groups as zero-dimensional Lie groups:

If G carries the discrete topology, then every map is smooth by definition, so any discrete group is trivially a 0-dimensional Lie group.

(4) Why Lie groups matter

Lie groups are the **natural mathematical language of continuous symmetries**:

- In **classical mechanics**, they describe canonical transformations (e.g., rotations, boosts).
- In **quantum mechanics and QFT**, they govern unitary transformations on Hilbert space.

- Their tangent spaces at the identity define **Lie algebras**, whose elements correspond to **infinitesimal generators** of these symmetries. Thus, Lie groups provide the bridge between **geometry (manifolds)** and **symmetry (group actions)**, forming the foundation for the algebraic structures used in modern physics.

2. From Lie Group to Lie Algebra

I. Motivation

A **Lie group** G encodes *global*, finite symmetry transformations — for example, finite rotations, boosts, or translations.

However, in both mathematics and physics, we are often more interested in the **infinitesimal** structure near the identity element $e \in G$:

- In calculus, local derivatives describe how a function behaves near a point.
- In symmetry theory, local derivatives describe how an infinitesimal transformation acts.

To describe such infinitesimal structure, we look at the **tangent space** of G at the identity. Later we will show that this tangent space naturally acquires an algebraic operation — the **Lie bracket** — making it into a **Lie algebra**.

II. Tangent Space $T_e G$ at the Identity

Let G be a smooth manifold and $e \in G$ its identity element.

The **tangent space** at e , denoted $T_e G$, consists of tangent vectors to all smooth curves through e .

(1) Tangent vector as infinitesimal generator of curve

Each element $X \in T_e G$ corresponds to an **infinitesimal generator** of a smooth curve $g(t) \in G$ with $g(0) = e$:

$$X = \frac{d}{dt} g(t) \Big|_{t=0}.$$

(2) Every tangent vector represents an infinitesimal direction and thus a local subgroup

Every tangent vector $X \in T_e G$ represents an **infinitesimal direction** in the group manifold starting from the identity element e .

To make this precise, pick any **smooth curve** $g(t)$ in G such that:

$$g(0) = e, \quad \frac{d}{dt} g(t) \Big|_{t=0} = X.$$

Among all such curves, there is a unique one that is also a **group homomorphism** from $(\mathbb{R}, +)$ (near 0) into G :

$$g(t+s) = g(t)g(s), \quad g(0) = e.$$

Such a curve is called a **local one-parameter subgroup** of G .

Intuitively, it is the path obtained by “flowing” along the group in the direction of X for a time parameter t .

II. Left Translation and Left-Invariant Vector Fields

(1) Left-translation map L_g

In a Lie group G , **left translation** means multiplying every element by a fixed group element g on the **left**:

$$L_g : G \rightarrow G, \quad L_g(h) = gh.$$

This map moves every point $h \in G$ to another point gh along the group’s structure.

(2) Pushforward induced by left-translation

Because L_g is a smooth **map between manifolds**, (in the language of fibre bundles, consider G as the base manifold and (G, TG) a **tangent bundle**), it induces a **pushforward** at each point $h \in G$:

$$(L_g)_* : T_h G \longrightarrow T_{gh} G.$$

That is, $(L_g)_*$ tells us **how a tangent vector at h is carried forward** to a tangent vector at gh under the motion defined by left multiplication.

You can think of $(L_g)_*$ as the infinitesimal version (a differential) of the map L_g — it acts on *velocities* of curves, not on points.

(2') What does $(L_g)_*$ actually do?

Let's recall that a **tangent vector** at a point $h \in G$ can be defined as the **velocity of a smooth curve** through that point:

$$v = \left. \frac{d}{dt} \gamma(t) \right|_{t=0}, \quad \gamma(0) = h, \quad \gamma(t) \in G$$

Now apply the **left translation map** $L_g : G \rightarrow G$ defined by $L_g(x) = gx$.

Composing the curve with L_g gives a new curve:

$$L_g \circ \gamma : t \mapsto g\gamma(t)$$

which passes through gh at $t = 0$.

The **pushforward** $(L_g)_*$ acts on tangent vectors by differentiating this new curve at $t = 0$:

$$(L_g)_*(v) := \left. \frac{d}{dt} (L_g(\gamma(t))) \right|_{t=0} = \left. \frac{d}{dt} (g\gamma(t)) \right|_{t=0}.$$

Therefore, $(L_g)_*$ takes a tangent vector v at h — represented by the **motion** $\gamma(t)$ through h — and produces a *new tangent vector* at gh , corresponding to the **same motion**, but now seen through left multiplication by g .

(3) Left-invariant vector field

A **vector field** X on a manifold assigns to each point $h \in G$ a tangent vector $X(h) \in T_h G$. Thus $X : G \rightarrow TG$ can be viewed as a smooth map that “attaches an arrow” (a direction in the tangent space) to every point.

A **left-invariant vector field** is a vector field

$$X^L : G \rightarrow TG$$

such that it is **invariant** under all left translations:

$$(L_g)_* X^L(h) = X^L(gh), \quad \forall g, h \in G.$$

here "invariant" means as the total manifold is transformed by L_g (a point that is originally h is now gh , the vector attached to this new point is just the pushforward of the vector attached to the original point)

Each tangent vector $X \in T_e G$ uniquely determines a left-invariant vector field X^L by

$$X^L(g) := (L_g)_* X.$$

This establishes a **one-to-one correspondence** between $T_e G$ and the space of left-invariant vector fields on G .

III. Lie Bracket of Vector Fields

(1) Lie bracket

Given two smooth vector fields X^L, Y^L on G , their **Lie bracket**

$$[X^L, Y^L] = X^L Y^L - Y^L X^L$$

measures the noncommutativity of their flows — i.e. how performing two infinitesimal displacements in opposite orders differs.

For left-invariant vector fields, $[X^L, Y^L]$ is again left-invariant, so we can define the bracket directly at the identity:

$$[X, Y] := [X^L, Y^L]_e.$$

(2) Lie bracket on a Lie group defines a Lie Algebra

A **Lie algebra** over a field \mathbb{F} (typically \mathbb{R} or \mathbb{C}) is a vector space \mathfrak{g} equipped with a bilinear map

$$[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$$

that satisfies:

1. **Antisymmetry:** $[X, Y] = -[Y, X]$
2. **Jacobi identity:** $[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$

Hence, Lie bracket defines a bilinear, antisymmetric operation on $T_e G$ satisfying the Jacobi identity. Hence, $(T_e G, [\cdot, \cdot])$ becomes a **Lie algebra**, denoted

$$\mathfrak{g} = \text{Lie}(G).$$

IV. Exponential Map

Now that we have defined left translations and invariant vector fields, we can rigorously introduce the **exponential map**.

For a given $X \in \mathfrak{g} = T_e G$, consider the unique integral curve $g(t)$ of the left-invariant vector field X^L satisfying

$$\frac{d}{dt}g(t) = X^L(g(t)), \quad g(0) = e.$$

This curve forms a **local one-parameter subgroup** of G :

$$g(t+s) = g(t)g(s)$$

for t, s near 0.

The **exponential map** is then defined by

$$\exp : \mathfrak{g} \rightarrow G, \quad \exp(tX) = g(t)$$

That is, $\exp(X)$ is the group element reached by flowing along X^L for unit parameter $t = 1$.

Interpretations:

- $\exp(tX)$ converts the **infinitesimal generator** X into the **finite transformation** obtained by integrating its flow.
- In matrix Lie groups, the same definition yields the **matrix exponential**:

$$\exp(X) = I + X + \frac{1}{2!}X^2 + \frac{1}{3!}X^3 + \dots$$

and $\exp(tX)$ satisfies $e^{tX}e^{sX} = e^{(t+s)X}$.

Thus, the exponential map provides a precise and geometric bridge between the **Lie algebra** (tangent space of infinitesimal generators) and the **Lie group** (finite symmetry transformations).

VI. Physical Interpretation

In physics:

- The **Lie algebra** corresponds to **infinitesimal symmetry generators** (e.g., angular momentum operators, momentum operators).
- The **Lie group** corresponds to **finite transformations** generated by exponentiation:

$$U(\varepsilon) = e^{-i\varepsilon Q}$$

- The commutator of operators mirrors the Lie bracket:

$$[Q_A, Q_B] = i f_{AB}{}^C Q_C$$

Hence, we say "**Lie algebras describe how infinitesimal symmetry transformations combine**," while "**Lie groups describe how finite transformations act**".

3. Unitary Representations and Generators in QFT

I. Symmetry as a Unitary Representation

In quantum theory, a **symmetry transformation** acts on the Hilbert space of states \mathcal{H} by a **unitary (or anti-unitary)** operator:

$$U(g) : \mathcal{H} \rightarrow \mathcal{H}, \quad g \in G.$$

The map

$$U : G \rightarrow \mathrm{U}(\mathcal{H})$$

is called a **unitary representation** of the Lie group if it preserves the group structure:

$$U(g_1 g_2) = U(g_1) U(g_2), \quad U(e) = I$$

(We call it a representation cuz it preserves the group structure, and a unitary one cuz it maps group element to unitary operators)

Thus, each abstract group element g corresponds to a concrete physical operation $U(g)$ acting on states.

II. One-Parameter Unitary Subgroups

Consider a **continuous one-parameter subgroup** of :

$$\{g(\varepsilon) \mid \varepsilon \in \mathbb{R}\}, \quad g(\varepsilon_1 + \varepsilon_2) = g(\varepsilon_1)g(\varepsilon_2).$$

Its representation on Hilbert space gives a one-parameter family of unitary operators:

$$U(\varepsilon) := U(g(\varepsilon)), \quad U(0) = I, \quad U(\varepsilon_1 + \varepsilon_2) = U(\varepsilon_1)U(\varepsilon_2).$$

Such a family forms a **strongly continuous one-parameter unitary group**.

III. Stone's Theorem and Self-Adjoint Generators

By **Stone's theorem** (functional analysis):

Every strongly continuous one-parameter unitary group has a unique **self-adjoint generator** G such that:

$$U(\varepsilon) = e^{-i\varepsilon G},$$

and equivalently,

$$\frac{d}{d\varepsilon} U(\varepsilon) \Big|_{\varepsilon=0} = -iG.$$

- G is called the **generator** of the continuous symmetry.
- Its eigenvalues correspond to **conserved quantities** (e.g., energy, momentum, charge).
- In quantum mechanics, observables are represented by self-adjoint operators, so **generators of unitary symmetries are observables**.

IV. Lie Algebra Representation by Operators

Let G be a Lie group with Lie algebra \mathfrak{g} , and let

$$U : G \rightarrow \mathbf{U}(\mathcal{H})$$

be a **unitary representation** acting on a Hilbert space \mathcal{H} .

(1) Infinitesimal form of the representation

For each $X \in \mathfrak{g}$, consider the **one-parameter subgroup**

$$\exp(\varepsilon X) \in G, \quad \varepsilon \in \mathbb{R}.$$

Its image under the representation is a one-parameter family of unitary operators

$$U(\exp(\varepsilon X)) \equiv U(\varepsilon).$$

By **Stone's theorem**, there exists a unique **self-adjoint (Hermitian) operator** \hat{X} such that

$$U(\exp(\varepsilon X)) = e^{-i\varepsilon \hat{X}}, \quad \hat{X}^\dagger = \hat{X}.$$

The operator \hat{X} is called the **Hermitian generator** associated with the Lie algebra element X .

(2) Relation between commutators and Lie brackets

Because the exponential map preserves the local group structure, the product of two infinitesimal transformations satisfies (to first order in ε, δ):

$$\exp(\varepsilon X) \exp(\delta Y) = \exp\left(\varepsilon X + \delta Y + \frac{1}{2}\varepsilon\delta[X, Y] + \dots\right).$$

Applying the unitary representation and expanding both sides gives

$$e^{-i\varepsilon \hat{X}} e^{-i\delta \hat{Y}} = e^{-i(\varepsilon \hat{X} + \delta \hat{Y}) - \frac{1}{2}\varepsilon\delta[\hat{X}, \hat{Y}] + \dots}.$$

Comparing coefficients yields the correspondence between commutators of generators and Lie brackets:

$$[\hat{X}, \hat{Y}] = i \widehat{[X, Y]}.$$

of which:

- LHS is the commutator of the unitary representations of Lie algebra elements
- RHS is i times the representation of the Lie bracket of two Lie algebra elements

In other words the statement means:

“The commutator of the **represented generators** on Hilbert space reproduces (up to i) the **representation of the Lie bracket** of the corresponding abstract Lie-algebra elements.”

or equivalently,

“The operator commutator realizes the same algebraic structure as the geometric Lie bracket of vector fields.”

(3) Why the factor of i appears

- Mathematically, representations are often taken in **anti-Hermitian** form: $\rho(X)$ satisfies

$$[\rho(X), \rho(Y)] = \rho([X, Y]).$$

- Physicists prefer **Hermitian** generators \hat{X} so that the finite transformations

$$U(\exp(\varepsilon X)) = e^{-i\varepsilon \hat{X}}$$

are unitary.

- Converting $\rho(X) = -i\hat{X}$ introduces the extra factor of i in

$$[\hat{X}, \hat{Y}] = i \widehat{[X, Y]}.$$

(3') Equivalent anti-Hermitian convention

If one defines the **anti-Hermitian representation**

$$\rho(X) := -i\hat{X}$$

then $\rho(X)$ satisfies

$$[\rho(X), \rho(Y)] = \rho([X, Y])$$

which is the mathematicians' convention for Lie-algebra representations.

In this form, $\rho : \mathfrak{g} \rightarrow \mathfrak{u}(\mathcal{H})$ is a linear homomorphism into the Lie algebra of anti-Hermitian operators.

(4) Summary

Mathematical object	Physical meaning	Example
Lie group G	Finite continuous symmetry	Rotations, translations
One-parameter subgroup $\exp(\varepsilon X)$	Continuous transformation parameterized by ε	Rotation by angle ε
Lie algebra element X	Infinitesimal generator (abstract)	Angular momentum axis
Self-adjoint operator \hat{X}	Observable generating the symmetry	\hat{J}_z for rotation around z
Exponential $e^{-i\varepsilon \hat{X}}$	Finite unitary transformation	$e^{-i\theta \hat{J}_z}$

For more detailed discussion about the interpretations in QFT, refer to the extension of this notes [Lecture 1X Unitary Representations of Lie Group and Lie Algebra in QFT](#)
