
Lecture 1X Symmetries of Tensors From
Index Manipulation to Representation Theory
0. Motivation
The metric gab is symmetric;
The electromagnetic tensor Fab = −Fba is antisymmetric;
The Riemann tensor Gabcd has "strange" symmetries.

Question: where do these patterns come from?

Are they just conventions, or do they reflect deeper algebraic structure?

Answer: All these symmetries are consequences of how the
symmetric group acts on tensor indices

1. Set-up & Notations

2. Rank-2 as Prototype

Work over a finite-dimensional vector space V  over R (or C); dimV = n.
Rank-r tensors live in V ⊗r, denotes Ta1⋯ar .

Rigourously speaking, rank-r tensors live in V ∗⊗r, but we simplify this for
convenience;
The notation Tα1...αr

 simply means the r indices of the tensor are labeled by
α1, . . . ,αr; or say, we explicitly choose r symbols for indexing the tensor,
and call these symbols α1, . . . ,αr

The symmetric group Sr acts by permuting slots:

(σ ⋅ T )a1⋯ar := Taσ(1)⋯aσ(r)
.

Round brackets ( ) denote symmetrization, and square brackets [ ] denote
antisymmetrization:

T(a1⋯ar) =
1

r!
∑
σ∈Sr

Taσ(1)⋯aσ(r)
, T[a1⋯ar] =

1

r!
∑
σ∈Sr

sgn(σ)Taσ(1)⋯aσ(r)
.



I. Explicit Decomposition of Rank-2 Tensor
Let Tab be a (covariant) rank-2 tensor.

We can always decompose it into:

Tab = T(ab) + T[ab]

Where:

This decomposition is:

II. Properties of this Decomposition

III. Decomposition of T ab and Symmetry Group S2

We’re interested in how the permutation of indices relates to the representation
theory of S2.

(1) Permutation group S2 can be represented by linear
automorphism operators on V ⊗ V

T(ab) = 1
2 (Tab + Tba) is the symmetric part

T[ab] = 1
2 (Tab − Tba) is the antisymmetric part

Linear: both parts are tensors
Unique: every component of Tab is split unambiguously
Complete: all information in Tab is captured by these two parts

The symmetric part satisfies T(ab) = T(ba)

The antisymmetric part satisfies T[ab] = −T[ba]

In n-dimensional space, a rank-2 tensor has:
n(n+1)

2  independent symmetric components
n(n−1)

2  independent antisymmetric components
So together they span the full n2-dimensional space of rank-2 tensors.

The group S2 has two elements:
e: identity permutation



(1‘) Permuation group Sn is naturally represented by linear
automorphisms of the tensor product space V ⊗n, whose action on
tensors is permuting tensor factors

(2) So V ⊗ V  is a representation space of S2

Recall that, from representation theory:

A representation of group G on a vector space W , is a homomorphism:

ρ : G → GL(W)

σ = (12): swaps a ↔ b

Now lets consider the natural action of the elements, namely their action on
space V ⊗2

We denote the action of σ on space by ρ(σ), and similarly for e by ρ(e)

The permutation group S2 acts on this space by permuting tensor factors.
Recall tensor factors.

For instance, a pure tensor like v1 ⊗ v2 ⊗ v3 ∈ V ⊗3 consists of 3
tensor factors, namely v1, v2, v3 ∈ V .
And the space V ⊗3 is made by forming linear combinations of
such pure tensors

S2 acts on V ⊗2 by permuting tensor factors, for example:
(12) acts on V ⊗2 by ρ(12), which permutes tensor factors by:
ρ((12))(v1 ⊗ v2) = v2 ⊗ v1

We notice that ρ(σ), ρ(e) ∈ GL(V ⊗2), indicating that the permutation group S2 is
realized by a subgroup of GL(V ⊗2), or say be represented by linear
automorphisms of the tensor product space V ⊗2

For general permutation group Sn, we may expect (and indeed, there is)
that there exists a group homomorphism:

ρ : Sn → GL(V ⊗n)

defined by:

ρ(σ)(v1 ⊗ v2 ⊗ ⋯ ⊗ vn) := vσ−1(1) ⊗ vσ−1(2) ⊗ ⋯ ⊗ vσ−1(n)

this is called the natural representation of Sn on V ⊗n



i.e. a representation assigns each g ∈ G a linear automorphism ρ(g) : W → W

So since we now have "S2 can be represented by (subgroup of) GL(V ⊗ V )", we can
say that V ⊗ V  is a representation space of the permutation group S2

(3) Group representation theory tells about relation betwenn
subrepresentation, invariant subspace, irreducible representation
and projectors

We first recall Maschke’s Theorem, which states:

Any finite-dimensional epresentation of G over C is completely reducible:

V ≅⨁
λ

mλVλ

where each Vλ carries an irrep, and mλ ∈ Z≥0 is its multiplicity;
equivalently, V  is a direct sum of invariant subspaces, each isomorphic to an
irrep; no further invariant splitting is possible inside an irrep.

(And then for each specific irreducible representation labeled λ, the realization of a
group element g ∈ G is just an automorphism operator ρλ(g) ∈ GL(Vλ) )

Practically, these invariant subspaces are related to corresponding irreps by the so-
called character (central) projectors, which is determined by:

Pλ =
dλ

|G|
∑
g∈G

χλ(g−1)ρ(g)

(4) Relation between decomposition (of tensor) and projector
operator

Idea: the symmetric/antisymmetric piece of rank-3 tensor is exactly the image of the
two S2-equivariant projectors built from characters.

1. Character (central) projectors for S2.
Let χ+ be the trivial character and χ− the sign character; d+ = d− = 1, |S2| = 2

The projectors can then be determined:

P+ =
1

2
(ρ(e) + ρ(12)), P− =

1

2
(ρ(e) − ρ(12))



2. More on Group Representation Theory
This section is a short reminder of the core statements of group representation
theory.

I. Representation of a Finite Group
A (finite-dimensional) representation of a finite group G over C is a homomorphism

ρ : G → GL(V )

thus we often denote a representation by ρ (the homomorphism), or by V  (the
vector space that carries the representations), or (V , ρ) (the representation space
along with the homomorphism).

In a specific representation (V , ρ), each group element g ∈ G is realized by an
automorphism operator ρ(g) ∈ GL(V ) of the space.

II. Invariant Subspace and Irreducible Representation

(1) Invariant subspace

These satisfy

P 2
± = P±, P+P− = 0, P+ + P− = I, P±ρ(g) = ρ(g)P±  (∀g ∈ S2)

2. Images = invariant subspaces carrying the two irreps.

ImP+ = Sym2V

(trivial irrep),

ImP− = Λ2V

(sign irrep).
3. Hence the isotypic decomposition

V ⊗ V = Sym2V ⊕ Λ2V

is realized by these two commuting idempotents.
4. Uniqueness, orthogonality, and functoriality.



Given a finite-dimensional representation (V , ρ) of group G, we call subspace W ∈ V

a invariant subspace if:

∀w ∈ W , g ∈ G : ρ(g)w ∈ W

(2) Irreducible representation

(V , ρ) is irreducible if it has no nonzero proper invariant subspace.

(3) Schur's Lemma

III. Complete Reducibility (Maschke)

(1) Maschke’s Theorem:

For finite G over C, every representation decomposes as a direct sum of irreps

V ≅⨁
λ

mλVλ

(2) Isotypic decomposition

V ≅⨁
λ

V (λ)

with

V (λ) ≅Vλ ⊗ C
mλ

Each V (λ) is invariant and contains all copies of the irrep Vλ)

(3) character function of an irreducible representation

Let (V , ρ) be a (finite-dimensional, complex) representation of a finite group G.
Then the character of this representation is the complex-valued function on G
defined by

χρ(g) = Tr(ρ(g))

When the representation is irreducible, we call this the character of the irrep.

Schur’s Lemma: If V ,W  are irreps and T : V → W  is G-equivariant, then T = 0

unless V ≅W ; if V = W , then T = λI.



IV. Regular Representation
For a finite group G, take the complex vector space

C[G] = {∑
g∈G

ag, eg; ; ag ∈ C}

with basis vectors eg labeled by group elements. Define a left action of G by

ρreg(h), eg; =; ehg (left multiplication)

This makes C[G] a |G|-dimensional representation space of G; it’s called the (left)
regular representation.

(1) Decomposition of regular representation

One can prove that:

C[G] ≅⨁
λ

dλVλ

where dλ = dimVλ.

Consequently:

∑
λ

d2
λ = |G|

characters of irreps are orthonormal (w.r.t. class function inner product).

(2) Decomposition of regular representation gives all irreps of a
finite group

V. Projectors (via characters) ∣
For an irrep λ with character χλ and dimension dλ, the central
idempotent/projector on the λ-isotypic component is defined as:

Pλ =
dλ

|G|
∑
g∈G

χλ(g−1)ρ(g)

Properties:

P 2
λ = Pλ, PλPμ = 0



VI. Relation with Tensor-Symmetry

3. Generalization to rank-n tensor and Sn group
I. Natural Sn–action on V ⊗n

For a vector space V  and n ≥ 2, define

ρ :  Sn⟶ GL(V ⊗n), ρ(σ)(v1 ⊗ ⋯ ⊗ vn); =; vσ−1(1) ⊗ ⋯ ⊗ vσ−1(n).

Thus V ⊗n is a representation of Sn (by permuting tensor factors).

II. Schur–Weyl picture (commuting actions)
The actions of Sn and GL(V ) on V ⊗n commute. Consequently there is a canonical
decomposition

V ⊗n ≅ ⨁
λ⊢n, ℓ(λ)≤dimV

Sλ(V )  ⊗  Spechtλ,

where:

and

∑
λ

Pλ = IV

On V ⊗n,
Sn acts by permuting indices;
decomposition into irreps of Sn (Young diagrams) corresponds to symmetry
types.

Young symmetrizers are explicit (non-central) idempotents giving the
corresponding subspaces.

λ is a partition (Young diagram) of n,
Spechtλ is the irreducible Sn–module of shape λ,
Sλ(V ) is the corresponding irreducible GL(V )–module (Schur functor),



As an Sn–module, the λ–isotypic component is

V (λ) ≅; Spechtλ

Sn carries

  ⊗   Sλ(V )

multiplicity space

so the multiplicity of Spechtλ equals dimSλ(V ).

III. Central (character) projectors Pλ

For each irrep λ of Sn with character χλ and dλ = dim Spechtλ,

Pλ =
dλ

n!
∑
σ∈Sn

χλ(σ−1), ρ(σ)

is a G–equivariant idempotent on V ⊗n:

P 2
λ = Pλ, PλPμ = 0 (λ ≠ μ), ∑

λ⊢n

Pλ = I, Im,Pλ = V (λ).

(1) number of central projectors = number of irreps of Sn = number
of partition of n

For any finite group G, the central primitive idempotents of C[G] are in one–to–one
correspondence with the irreducible representations of G.
For G = Sn, this means:

(2) How Young diagrams help us find all central projectors?

the constraint ℓ(λ) ≤ dimV  enforces vanishing components (e.g. ΛkV = 0 if
k > dimV ).

 

The number of central primitive idempotents (a.k.a. central projectors onto
isotypic components) equals the number of irreps of Sn.
The irreps of Sn are classified by partitions of n, i.e. by Young diagrams of size
n.
Therefore the number is p(n), the number of partitions of n.

Each partition λ ⊢ n labels:
an Sn–irrep Spechtλ (Specht module),
a central primitive idempotent eλ ∈ C[Sn],
and hence a central projector Pλ on any Sn–representation via ρ(Pλ).



There is another route finding all central projectors via Young diagram:

Concretely, with χλ the irreducible character and dλ = dim Spechtλ,

eλ =
dλ

n!
∑
σ∈Sn

χλ(σ−1),σ (in C[Sn])

and for a given action ρ : Sn → GL(V ),

Pλ = ρ(eλ)

is the Sn–equivariant projector onto the λ–isotypic component of V .

Input: a partition / Young diagram
Fix a partition λ ⊢ n (a Young diagram of size n).
Choose a standard Young tableau t of shape λ (fill 1, … ,n increasing
along rows and columns).

Row/column subgroups and basic symmetrizers
Let Rt ≤ Sn be the row group: permutations that permute entries within
each row of t.
Let Ct ≤ Sn be the column group: permutations that permute entries
within each column of t.
Define in the group algebra C[Sn]:

at := ∑
r∈Rt

r, bt := ∑
c∈Ct

sgn(c) c

(Row symmetrizer at, column antisymmetrizer bt.)
Young symmetrizer (primitive idempotent up to scale)

Define the Young symmetrizer:

ct := at bt ∈ C[Sn].

There exists a nonzero scalar αt such that

pt := αt ct satisfies p2
t = pt.

(Equivalently, one can take αt = 1/f λ after choosing a conventional
normalization; f λ is the number of standard Young tableaux of shape λ by
the hook–length formula.)
Meaning: pt is a primitive idempotent in C[Sn] (not central). Acting via any



(3) Special cases:

(4) General cases: check (2)

IV. Rank–3 example (n = 3)
Partitions: (3) (totally sym), (2, 1) (mixed), (13) (totally anti).

representation ρ : Sn → GL(V ⊗n),

ρ(pt) : V ⊗n
⟶ V ⊗n

is a projector whose image is one copy of the Specht module Spechtλ (with
the mixed symmetry encoded by λ).

Central idempotent (isotypic projector) from summing tableau idempotents
Sum the primitive idempotents over all standard tableaux t of shape λ:

eλ := ∑
t of shape λ

pt

Then eλ is central and primitive central in C[Sn], and its image under any
representation ρ is the λ–isotypic projector:

Pλ := ρ(eλ), P 2
λ = Pλ, PλPμ = 0 (λ ≠ μ), ∑

λ⊢n

Pλ = I

Totally symmetric part (λ = (n)):

P(n) =
1

n!
∑
σ∈Sn

ρ(σ) ⇒ Im,P(n) = SymnV

Totally antisymmetric part (λ = (1n)):

P(1n) =
1

n!
∑
σ∈Sn

sgn(σ), ρ(σ) ⇒ Im,P(1n) = ΛnV

Projectors:

P(3) = 1
6 ∑

σ∈S3

ρ(σ), P(13) = 1
6 ∑

σ∈S3

sgn(σ), ρ(σ)



and

P(2,1) = I − P(3) − P(13)

Images:

Im,P(3) = Sym3V , Im,P(13) = Λ3V , Im,P(2,1) = mixed-symmetry subspace.


