Lecture 1X Symmetries of Tensors From
Index Manipulation to Representation Theory

0. Motivation

The metric g, is symmetric;
The electromagnetic tensor F,;, = —F, is antisymmetric;
The Riemann tensor G4 has "strange" symmetries.

Question: where do these patterns come from?

Are they just conventions, or do they reflect deeper algebraic structure?

Answer: All these symmetries are consequences of how the
symmetric group acts on tensor indices

1. Set-up & Notations

Work over a finite-dimensional vector space V over R (or C); dimV = n.

Rank-r tensors live in V®", denotes T,,.. ., .
Rigourously speaking, rank-r tensors live in V**", but we simplify this for
convenience;
The notation T, ,, simply means the r indices of the tensor are labeled by
aq, - .., a,; or say, we explicitly choose r symbols for indexing the tensor,
and call these symbols ay,...,a,

The symmetric group S, acts by permuting slots:

(0-T)ay-q, := TaU(l). -

Round brackets ( ) denote symmetrization, and square brackets [ | denote
antisymmetrization:

1 1
T(al‘ . 'ar) —= g Z Taa(l)' () T[al. . .aT] = F Z SgIl(O') Tad(l)’ ON
toes, toes,

2. Rank-2 as Prototype



|. Explicit Decomposition of Rank-2 Tensor
Let T}, be a (covariant) rank-2 tensor.

We can always decompose it into:

Tap = T(ab) + T[ab]

Where:
Tiar) = 5 (Tap + Te) is the symmetric part
Tiay) = %(Tab — Ty,) is the antisymmetric part

This decomposition is:

Linear: both parts are tensors
Unique: every component of Ty, is split unambiguously

Complete: all information in T, is captured by these two parts

Il. Properties of this Decomposition

The symmetric part satisfies T = T(pq)
The antisymmetric part satisfies Tju = —Tp

In n-dimensional space, a rank-2 tensor has:

n(n+1)
2

@ independent antisymmetric components

independent symmetric components

So together they span the full n2-dimensional space of rank-2 tensors.

lIl. Decomposition of T'** and Symmetry Group S,

We’re interested in how the permutation of indices relates to the representation

theory of S;.

(1) Permutation group S, can be represented by linear

automorphism operatorson V@ V

The group S, has two elements:
e: identity permutation



o= (12): swapsa <> b
Now lets consider the natural action of the elements, namely their action on
space V ®2
We denote the action of o on space by p(o), and similarly for e by p(e)
The permutation group S5 acts on this space by permuting tensor factors.

Recall tensor factors.
For instance, a pure tensor like v; ® vo ® v3 € V®3 consists of 3
tensor factors, namely vy, v9,v3 € V.
And the space V ®3 is made by forming linear combinations of
such pure tensors

S, acts on V%2 by permuting tensor factors, for example:
(12) acts on V®2 by p(12), which permutes tensor factors by:
p((12))(v1 ®@ v2) = v2 @ v
We notice that p(o), p(e) € GL(V ®?), indicating that the permutation group S, is
realized by a subgroup of GL(V ®?), or say be represented by linear
automorphisms of the tensor product space V ©?
For general permutation group S,,, we may expect (and indeed, there is)
that there exists a group homomorphism:

p: S, — GL(V®")
defined by:
p(O') (’Ul RQUa®- -+ Q ’Un) = Uo-1(1) @ VUg-1(2) @+ @ Vg-1(n)

this is called the natural representation of S, on V®”

(1°) Permuation group S, is naturally represented by linear
automorphisms of the tensor product space V", whose action on
tensors is permuting tensor factors

(2) So V ® V is a representation space of S,
Recall that, from representation theory:

A representation of group G on a vector space W, is a homomorphism:

p:G— GL(W)



i.e. a representation assigns each g € G a linear automorphism p(g) : W — W

So since we now have "S; can be represented by (subgroup of) GL(V ® V)", we can
say that V ® V is a representation space of the permutation group S

(3) Group representation theory tells about relation betwenn
subrepresentation, invariant subspace, irreducible representation
and projectors

We first recall Maschke’s Theorem, which states:

Any finite-dimensional epresentation of G over C is completely reducible:
V = @ myV)
A

where each V) carries an irrep, and m) € Z is its multiplicity;
equivalently, V is a direct sum of invariant subspaces, each isomorphic to an
irrep; no further invariant splitting is possible inside an irrep.

(And then for each specific irreducible representation labeled ), the realization of a
group element g € G is just an automorphism operator p,(g) € GL(V)) )

Practically, these invariant subspaces are related to corresponding irreps by the so-
called character (central) projectors, which is determined by:

d _
Py=23"xa(g ol9)
G| &2
(4) Relation between decomposition (of tensor) and projector
operator

Idea: the symmetric/antisymmetric piece of rank-3 tensor is exactly the image of the
two S,-equivariant projectors built from characters.

Character (central) projectors for S..
Let x . be the trivial character and x_ the sign character; d, =d_ =1,
The projectors can then be determined:

Sy| = 2

Po=(ole) +5(12), P = (ple) - p(12))



These satisfy
P!=P,, P.P.=0, P,+P =1, Piplg)=p(g)P: (Vg€ S»)
Images = invariant subspaces carrying the two irreps.
Im P, = Sym?V
(trivial irrep),
ImP_ = A*V

(sign irrep).
Hence the isotypic decomposition

VeV =Sym’V o A’V

is realized by these two commuting idempotents.

Uniqueness, orthogonality, and functoriality.

2. More on Group Representation Theory

This section is a short reminder of the core statements of group representation
theory.

l. Representation of a Finite Group
A (finite-dimensional) representation of a finite group G over C is a homomorphism
p:G— GL(V)

thus we often denote a representation by p (the homomorphism), or by V (the
vector space that carries the representations), or (V, p) (the representation space
along with the homomorphism).

In a specific representation (V, p), each group element g € G is realized by an
automorphism operator p(g) € GL(V) of the space.

Il. Invariant Subspace and Irreducible Representation

(1) Invariant subspace



Given a finite-dimensional representation (V, p) of group G, we call subspace W € V
a invariant subspace if:

VweW,ge G: p(gqweW
(2) Irreducible representation
(V, p) is irreducible if it has no nonzero proper invariant subspace.
(3) Schur's Lemma

Schur’s Lemma: If V, W are irrepsand T : V — W is G-equivariant, then T'= 0
unless VW;ifV=W,thenT = Al.

lll. Complete Reducibility (Maschke)

(1) Maschke’s Theorem:

For finite G over C, every representation decomposes as a direct sum of irreps
V @ myV
A

(2) Isotypic decomposition

with
VO >y, @ Ccm™
Each VW is invariant and contains all copies of the irrep W)
(3) character function of an irreducible representation

Let (V, p) be a (finite-dimensional, complex) representation of a finite group G.
Then the character of this representation is the complex-valued function on G
defined by

xo(9) = Tr(p(g))

When the representation is irreducible, we call this the character of the irrep.



IV. Regular Representation

For a finite group G, take the complex vector space

= {Z Gg; €g;

ge@G

;ay € C}

with basis vectors e, labeled by group elements. Define a left action of G by

Preg(R), €g;=; €ng (left multiplication)

This makes C|G| a |G|-dimensional representation space of G; it’s called the (left)
regular representation.

(1) Decomposition of regular representation

One can prove that:
G] = P daVa
A

where dy, = dim V.

Consequently:
Y d3 =G|
A

characters of irreps are orthonormal (w.r.t. class function inner product).

(2) Decomposition of regular representation gives all irreps of a
finite group

V. Projectors (via characters)

For an irrep A with character x, and dimension d,, the central
idempotent/projector on the A-isotypic component is defined as:

2= " xalg™He(g)

ge@G

)\
\G\

Properties:

P}=P,, PP, =0



and

Y P=1Iy
A

VI. Relation with Tensor-Symmetry

On V&n,
S,, acts by permuting indices;
decomposition into irreps of S,, (Young diagrams) corresponds to symmetry

types.
Young symmetrizers are explicit (non-central) idempotents giving the
corresponding subspaces.

3. Generalization to rank-n tensor and S,, group

I. Natural S,—action on V' ®»
For a vector space V and n > 2, define
p: S, — GL(V®"), p(0) (V1 ® - ®Vy); =35 1(1) ® -+ ® Vg1(y).

Thus V®" is a representation of S,, (by permuting tensor factors).

Il. Schur-Weyl picture (commuting actions)

The actions of S,, and GL(V) on V®" commute. Consequently there is a canonical
decomposition

Ve o @ S\(V) ® Specht,,
Abn, £(A)<dim V'

where:

A is a partition (Young diagram) of n,
Specht, is the irreducible S,—module of shape A,
S\(V) is the corresponding irreducible GL(V')—-module (Schur functor),



the constraint £(\) < dim V enforces vanishing components (e.g. A*V = 0 if
k> dimV).

As an S§,—module, the A—isotypic component is

VA >~ Specht, ®  Sa(V)
N—— N——

S, carries multiplicity space

so the multiplicity of Specht, equals dim S (V).

lll. Central (character) projectors P,

For each irrep A of S, with character x and d) = dim Specht,
Py = N Z xa(o™h), p(o)

is a G—equivariant idempotent on V ®7;

P}!=P,, P\P,=0(\#p), » Pr=I ImP,=VW,
AFn

(1) number of central projectors = number of irreps of S, = number

of partition of n

For any finite group G, the central primitive idempotents of C|G] are in one—to—one

correspondence with the irreducible representations of G.
For G = S,,, this means:

The number of central primitive idempotents (a.k.a. central projectors onto
isotypic components) equals the number of irreps of §,,.

The irreps of S, are classified by partitions of n, i.e. by Young diagrams of size

n.

Therefore the number is p(n), the number of partitions of n.

(2) How Young diagrams help us find all central projectors?

Each partition A - n labels:
an S,—irrep Specht, (Specht module),
a central primitive idempotent e, € C[S,,],
and hence a central projector P\ on any S,—representation via p(P5).



Concretely, with x, the irreducible character and d, = dim Specht,,,

er=2 % xal0 )0 (nClS,)

" oes,
and for a given action p : S,, — GL(V),
Py = p(ey)
is the S,,—equivariant projector onto the \—isotypic component of V.

There is another route finding all central projectors via Young diagram:

Input: a partition / Young diagram
Fix a partition A - n (a Young diagram of size n).

Choose a standard Young tableau ¢ of shape X (fill 1,...,n increasing
along rows and columns).

Row/column subgroups and basic symmetrizers

Let R; < S,, be the row group: permutations that permute entries within
each row of ¢.

Let C; < S, be the column group: permutations that permute entries
within each column of ¢.

Define in the group algebra C[S,,]:

a; = Zr, by = ngn(c)c

T'ERt cECt

(Row symmetrizer a;, column antisymmetrizer b;.)

Young symmetrizer (primitive idempotent up to scale)
Define the Young symmetrizer:

Ct — atbt € C[Sn]
There exists a nonzero scalar «a; such that
p; = agc; satisfies pf = p;.

(Equivalently, one can take a; = 1/ f* after choosing a conventional
normalization; f* is the number of standard Young tableaux of shape )\ by
the hook—length formula.)

Meaning: p: is a primitive idempotent in C[S,,] (not central). Acting via any



representation p : S, — GL(V ®"),
p(ps) : V" — V&

is a projector whose image is one copy of the Specht module Specht, (with
the mixed symmetry encoded by \).

Central idempotent (isotypic projector) from summing tableau idempotents
Sum the primitive idempotents over all standard tableaux ¢t of shape A:

E)\ = Z Dt

t of shape A

Then e, is central and primitive central in C[S,,], and its image under any
representation p is the \—isotypic projector:

Py = pley), P} =P, P\P,=0()\#np), ZPA:I
AFn

(3) Special cases:

Totally symmetric part (A = (n)):

1
P(n) = F Z p(O') = Im, P(n) = Sym"V

t eSS,

Totally antisymmetric part (A = (17)):

1
Piny = - Z sgn(o),p(o) = Im, Py, =A"V

* o€eS,

(4) General cases: check (2)

IV. Rank-3 example (n = 3)
Partitions: (3) (totally sym), (2,1) (mixed), (13) (totally anti).
Projectors:

P =

= [

S p0).  Puy =4+ sen(o).plo)
0ESs

oE€Ss



and

Py = I — P — Pus)
Images:

Im, P3) = Sym’V, Im, P(;3) = A3V, Im, P, ;) = mixed-symmetry subspace.



